freqtrade_origin/freqtrade/freqai/prediction_models/LightGBMClassifierMultiTarget.py
2024-05-13 07:10:25 +02:00

73 lines
2.7 KiB
Python

import logging
from typing import Any, Dict
from lightgbm import LGBMClassifier
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.base_models.FreqaiMultiOutputClassifier import FreqaiMultiOutputClassifier
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class LightGBMClassifierMultiTarget(BaseClassifierModel):
"""
User created prediction model. The class inherits IFreqaiModel, which
means it has full access to all Frequency AI functionality. Typically,
users would use this to override the common `fit()`, `train()`, or
`predict()` methods to add their custom data handling tools or change
various aspects of the training that cannot be configured via the
top level config.json file.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary holding all data for train, test,
labels, weights
:param dk: The datakitchen object for the current coin/model
"""
lgb = LGBMClassifier(**self.model_training_parameters)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
sample_weight = data_dictionary["train_weights"]
eval_weights = None
eval_sets = [None] * y.shape[1]
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) != 0:
eval_weights = [data_dictionary["test_weights"]]
eval_sets = [(None, None)] * data_dictionary["test_labels"].shape[1] # type: ignore
for i in range(data_dictionary["test_labels"].shape[1]):
eval_sets[i] = ( # type: ignore
data_dictionary["test_features"],
data_dictionary["test_labels"].iloc[:, i],
)
init_model = self.get_init_model(dk.pair)
if init_model:
init_models = init_model.estimators_
else:
init_models = [None] * y.shape[1]
fit_params = []
for i in range(len(eval_sets)):
fit_params.append(
{
"eval_set": eval_sets[i],
"eval_sample_weight": eval_weights,
"init_model": init_models[i],
}
)
model = FreqaiMultiOutputClassifier(estimator=lgb)
thread_training = self.freqai_info.get("multitarget_parallel_training", False)
if thread_training:
model.n_jobs = y.shape[1]
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
return model