mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 04:03:55 +00:00
228 lines
8.9 KiB
Python
Executable File
228 lines
8.9 KiB
Python
Executable File
import logging
|
|
from pathlib import Path
|
|
from typing import List, Optional
|
|
|
|
import joblib
|
|
import pandas as pd
|
|
from tabulate import tabulate
|
|
|
|
from freqtrade.data.btanalysis import (get_latest_backtest_filename, load_backtest_data,
|
|
load_backtest_stats)
|
|
from freqtrade.exceptions import OperationalException
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _load_signal_candles(backtest_dir: Path):
|
|
if backtest_dir.is_dir():
|
|
scpf = Path(backtest_dir,
|
|
Path(get_latest_backtest_filename(backtest_dir)).stem + "_signals.pkl"
|
|
)
|
|
else:
|
|
scpf = Path(backtest_dir.parent / f"{backtest_dir.stem}_signals.pkl")
|
|
|
|
try:
|
|
scp = open(scpf, "rb")
|
|
signal_candles = joblib.load(scp)
|
|
logger.info(f"Loaded signal candles: {str(scpf)}")
|
|
except Exception as e:
|
|
logger.error("Cannot load signal candles from pickled results: ", e)
|
|
|
|
return signal_candles
|
|
|
|
|
|
def _process_candles_and_indicators(pairlist, strategy_name, trades, signal_candles):
|
|
analysed_trades_dict = {}
|
|
analysed_trades_dict[strategy_name] = {}
|
|
|
|
try:
|
|
logger.info(f"Processing {strategy_name} : {len(pairlist)} pairs")
|
|
|
|
for pair in pairlist:
|
|
if pair in signal_candles[strategy_name]:
|
|
analysed_trades_dict[strategy_name][pair] = _analyze_candles_and_indicators(
|
|
pair,
|
|
trades,
|
|
signal_candles[strategy_name][pair])
|
|
except Exception as e:
|
|
print(f"Cannot process entry/exit reasons for {strategy_name}: ", e)
|
|
|
|
return analysed_trades_dict
|
|
|
|
|
|
def _analyze_candles_and_indicators(pair, trades, signal_candles):
|
|
buyf = signal_candles
|
|
|
|
if len(buyf) > 0:
|
|
buyf = buyf.set_index('date', drop=False)
|
|
trades_red = trades.loc[trades['pair'] == pair].copy()
|
|
|
|
trades_inds = pd.DataFrame()
|
|
|
|
if trades_red.shape[0] > 0 and buyf.shape[0] > 0:
|
|
for t, v in trades_red.open_date.items():
|
|
allinds = buyf.loc[(buyf['date'] < v)]
|
|
if allinds.shape[0] > 0:
|
|
tmp_inds = allinds.iloc[[-1]]
|
|
|
|
trades_red.loc[t, 'signal_date'] = tmp_inds['date'].values[0]
|
|
trades_red.loc[t, 'enter_reason'] = trades_red.loc[t, 'enter_tag']
|
|
tmp_inds.index.rename('signal_date', inplace=True)
|
|
trades_inds = pd.concat([trades_inds, tmp_inds])
|
|
|
|
if 'signal_date' in trades_red:
|
|
trades_red['signal_date'] = pd.to_datetime(trades_red['signal_date'], utc=True)
|
|
trades_red.set_index('signal_date', inplace=True)
|
|
|
|
try:
|
|
trades_red = pd.merge(trades_red, trades_inds, on='signal_date', how='outer')
|
|
except Exception as e:
|
|
raise e
|
|
return trades_red
|
|
else:
|
|
return pd.DataFrame()
|
|
|
|
|
|
def _do_group_table_output(bigdf, glist):
|
|
for g in glist:
|
|
# 0: summary wins/losses grouped by enter tag
|
|
if g == "0":
|
|
group_mask = ['enter_reason']
|
|
wins = bigdf.loc[bigdf['profit_abs'] >= 0] \
|
|
.groupby(group_mask) \
|
|
.agg({'profit_abs': ['sum']})
|
|
|
|
wins.columns = ['profit_abs_wins']
|
|
loss = bigdf.loc[bigdf['profit_abs'] < 0] \
|
|
.groupby(group_mask) \
|
|
.agg({'profit_abs': ['sum']})
|
|
loss.columns = ['profit_abs_loss']
|
|
|
|
new = bigdf.groupby(group_mask).agg({'profit_abs': [
|
|
'count',
|
|
lambda x: sum(x > 0),
|
|
lambda x: sum(x <= 0)]})
|
|
new = pd.concat([new, wins, loss], axis=1).fillna(0)
|
|
|
|
new['profit_tot'] = new['profit_abs_wins'] - abs(new['profit_abs_loss'])
|
|
new['wl_ratio_pct'] = (new.iloc[:, 1] / new.iloc[:, 0] * 100).fillna(0)
|
|
new['avg_win'] = (new['profit_abs_wins'] / new.iloc[:, 1]).fillna(0)
|
|
new['avg_loss'] = (new['profit_abs_loss'] / new.iloc[:, 2]).fillna(0)
|
|
|
|
new.columns = ['total_num_buys', 'wins', 'losses', 'profit_abs_wins', 'profit_abs_loss',
|
|
'profit_tot', 'wl_ratio_pct', 'avg_win', 'avg_loss']
|
|
|
|
sortcols = ['total_num_buys']
|
|
|
|
_print_table(new, sortcols, show_index=True)
|
|
|
|
else:
|
|
agg_mask = {'profit_abs': ['count', 'sum', 'median', 'mean'],
|
|
'profit_ratio': ['sum', 'median', 'mean']}
|
|
agg_cols = ['num_buys', 'profit_abs_sum', 'profit_abs_median',
|
|
'profit_abs_mean', 'median_profit_pct', 'mean_profit_pct',
|
|
'total_profit_pct']
|
|
sortcols = ['profit_abs_sum', 'enter_reason']
|
|
|
|
# 1: profit summaries grouped by enter_tag
|
|
if g == "1":
|
|
group_mask = ['enter_reason']
|
|
|
|
# 2: profit summaries grouped by enter_tag and exit_tag
|
|
if g == "2":
|
|
group_mask = ['enter_reason', 'exit_reason']
|
|
|
|
# 3: profit summaries grouped by pair and enter_tag
|
|
if g == "3":
|
|
group_mask = ['pair', 'enter_reason']
|
|
|
|
# 4: profit summaries grouped by pair, enter_ and exit_tag (this can get quite large)
|
|
if g == "4":
|
|
group_mask = ['pair', 'enter_reason', 'exit_reason']
|
|
if group_mask:
|
|
new = bigdf.groupby(group_mask).agg(agg_mask).reset_index()
|
|
new.columns = group_mask + agg_cols
|
|
new['median_profit_pct'] = new['median_profit_pct'] * 100
|
|
new['mean_profit_pct'] = new['mean_profit_pct'] * 100
|
|
new['total_profit_pct'] = new['total_profit_pct'] * 100
|
|
|
|
_print_table(new, sortcols)
|
|
else:
|
|
logger.warning("Invalid group mask specified.")
|
|
|
|
|
|
def _print_results(analysed_trades, stratname, analysis_groups,
|
|
enter_reason_list, exit_reason_list,
|
|
indicator_list, columns=None):
|
|
if columns is None:
|
|
columns = ['pair', 'open_date', 'close_date', 'profit_abs', 'enter_reason', 'exit_reason']
|
|
|
|
bigdf = pd.DataFrame()
|
|
for pair, trades in analysed_trades[stratname].items():
|
|
bigdf = pd.concat([bigdf, trades], ignore_index=True)
|
|
|
|
if bigdf.shape[0] > 0 and ('enter_reason' in bigdf.columns):
|
|
if analysis_groups:
|
|
_do_group_table_output(bigdf, analysis_groups)
|
|
|
|
if enter_reason_list and "all" not in enter_reason_list:
|
|
bigdf = bigdf.loc[(bigdf['enter_reason'].isin(enter_reason_list))]
|
|
|
|
if exit_reason_list and "all" not in exit_reason_list:
|
|
bigdf = bigdf.loc[(bigdf['exit_reason'].isin(exit_reason_list))]
|
|
|
|
if "all" in indicator_list:
|
|
print(bigdf)
|
|
elif indicator_list is not None:
|
|
available_inds = []
|
|
for ind in indicator_list:
|
|
if ind in bigdf:
|
|
available_inds.append(ind)
|
|
ilist = ["pair", "enter_reason", "exit_reason"] + available_inds
|
|
_print_table(bigdf[ilist], sortcols=['exit_reason'], show_index=False)
|
|
else:
|
|
print("\\_ No trades to show")
|
|
|
|
|
|
def _print_table(df, sortcols=None, show_index=False):
|
|
if (sortcols is not None):
|
|
data = df.sort_values(sortcols)
|
|
else:
|
|
data = df
|
|
|
|
print(
|
|
tabulate(
|
|
data,
|
|
headers='keys',
|
|
tablefmt='psql',
|
|
showindex=show_index
|
|
)
|
|
)
|
|
|
|
|
|
def process_entry_exit_reasons(backtest_dir: Path,
|
|
pairlist: List[str],
|
|
analysis_groups: Optional[List[str]] = ["0", "1", "2"],
|
|
enter_reason_list: Optional[List[str]] = ["all"],
|
|
exit_reason_list: Optional[List[str]] = ["all"],
|
|
indicator_list: Optional[List[str]] = []):
|
|
try:
|
|
backtest_stats = load_backtest_stats(backtest_dir)
|
|
for strategy_name, results in backtest_stats['strategy'].items():
|
|
trades = load_backtest_data(backtest_dir, strategy_name)
|
|
|
|
if not trades.empty:
|
|
signal_candles = _load_signal_candles(backtest_dir)
|
|
analysed_trades_dict = _process_candles_and_indicators(pairlist, strategy_name,
|
|
trades, signal_candles)
|
|
_print_results(analysed_trades_dict,
|
|
strategy_name,
|
|
analysis_groups,
|
|
enter_reason_list,
|
|
exit_reason_list,
|
|
indicator_list)
|
|
|
|
except ValueError as e:
|
|
raise OperationalException(e) from e
|