freqtrade_origin/tests/conftest.py

3404 lines
102 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# pragma pylint: disable=missing-docstring
import json
import logging
import re
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from pathlib import Path
from typing import Optional
from unittest.mock import MagicMock, Mock, PropertyMock
import numpy as np
import pandas as pd
import pytest
from xdist.scheduler.loadscope import LoadScopeScheduling
from freqtrade import constants
from freqtrade.commands import Arguments
from freqtrade.data.converter import ohlcv_to_dataframe, trades_list_to_df
from freqtrade.edge import PairInfo
from freqtrade.enums import CandleType, MarginMode, RunMode, SignalDirection, TradingMode
from freqtrade.exchange import Exchange, timeframe_to_minutes, timeframe_to_seconds
from freqtrade.freqtradebot import FreqtradeBot
from freqtrade.persistence import LocalTrade, Order, Trade, init_db
from freqtrade.resolvers import ExchangeResolver
from freqtrade.util import dt_now, dt_ts
from freqtrade.worker import Worker
from tests.conftest_trades import (
leverage_trade,
mock_trade_1,
mock_trade_2,
mock_trade_3,
mock_trade_4,
mock_trade_5,
mock_trade_6,
short_trade,
)
from tests.conftest_trades_usdt import (
mock_trade_usdt_1,
mock_trade_usdt_2,
mock_trade_usdt_3,
mock_trade_usdt_4,
mock_trade_usdt_5,
mock_trade_usdt_6,
mock_trade_usdt_7,
)
logging.getLogger("").setLevel(logging.INFO)
# Do not mask numpy errors as warnings that no one read, raise the exсeption
np.seterr(all="raise")
CURRENT_TEST_STRATEGY = "StrategyTestV3"
TRADE_SIDES = ("long", "short")
EXMS = "freqtrade.exchange.exchange.Exchange"
def pytest_addoption(parser):
parser.addoption(
"--longrun",
action="store_true",
dest="longrun",
default=False,
help="Enable long-run tests (ccxt compat)",
)
def pytest_configure(config):
config.addinivalue_line(
"markers", "longrun: mark test that is running slowly and should not be run regularly"
)
if not config.option.longrun:
config.option.markexpr = "not longrun"
class FixtureScheduler(LoadScopeScheduling):
# Based on the suggestion in
# https://github.com/pytest-dev/pytest-xdist/issues/18
def _split_scope(self, nodeid):
if "exchange_online" in nodeid:
try:
# Extract exchange ID from nodeid
exchange_id = nodeid.split("[")[1].split("-")[0].rstrip("]")
return exchange_id
except Exception as e:
print(e)
pass
return nodeid
def pytest_xdist_make_scheduler(config, log):
return FixtureScheduler(config, log)
def log_has(line, logs):
"""Check if line is found on some caplog's message."""
return any(line == message for message in logs.messages)
def log_has_when(line, logs, when):
"""Check if line is found in caplog's messages during a specified stage"""
return any(line == message.message for message in logs.get_records(when))
def log_has_re(line, logs):
"""Check if line matches some caplog's message."""
return any(re.match(line, message) for message in logs.messages)
def num_log_has(line, logs):
"""Check how many times line is found in caplog's messages."""
return sum(line == message for message in logs.messages)
def num_log_has_re(line, logs):
"""Check how many times line matches caplog's messages."""
return sum(bool(re.match(line, message)) for message in logs.messages)
def get_args(args):
return Arguments(args).get_parsed_arg()
def generate_trades_history(n_rows, start_date: Optional[datetime] = None, days=5):
np.random.seed(42)
if not start_date:
start_date = datetime(2020, 1, 1, tzinfo=timezone.utc)
# Generate random data
end_date = start_date + timedelta(days=days)
_start_timestamp = start_date.timestamp()
_end_timestamp = pd.to_datetime(end_date).timestamp()
random_timestamps_in_seconds = np.random.uniform(_start_timestamp, _end_timestamp, n_rows)
timestamp = pd.to_datetime(random_timestamps_in_seconds, unit="s")
trade_id = [
f"a{np.random.randint(1e6, 1e7 - 1)}cd{np.random.randint(100, 999)}" for _ in range(n_rows)
]
side = np.random.choice(["buy", "sell"], n_rows)
# Initial price and subsequent changes
initial_price = 0.019626
price_changes = np.random.normal(0, initial_price * 0.05, n_rows)
price = np.cumsum(np.concatenate(([initial_price], price_changes)))[:n_rows]
amount = np.random.uniform(0.011, 20, n_rows)
cost = price * amount
# Create DataFrame
df = pd.DataFrame(
{
"timestamp": timestamp,
"id": trade_id,
"type": None,
"side": side,
"price": price,
"amount": amount,
"cost": cost,
}
)
df["date"] = pd.to_datetime(df["timestamp"], unit="ms", utc=True)
df = df.sort_values("timestamp").reset_index(drop=True)
assert list(df.columns) == constants.DEFAULT_TRADES_COLUMNS + ["date"]
return df
def generate_test_data(timeframe: str, size: int, start: str = "2020-07-05", random_seed=42):
np.random.seed(random_seed)
base = np.random.normal(20, 2, size=size)
if timeframe == "1y":
date = pd.date_range(start, periods=size, freq="1YS", tz="UTC")
elif timeframe == "1M":
date = pd.date_range(start, periods=size, freq="1MS", tz="UTC")
elif timeframe == "3M":
date = pd.date_range(start, periods=size, freq="3MS", tz="UTC")
elif timeframe == "1w" or timeframe == "7d":
date = pd.date_range(start, periods=size, freq="1W-MON", tz="UTC")
else:
tf_mins = timeframe_to_minutes(timeframe)
if tf_mins >= 1:
date = pd.date_range(start, periods=size, freq=f"{tf_mins}min", tz="UTC")
else:
tf_secs = timeframe_to_seconds(timeframe)
date = pd.date_range(start, periods=size, freq=f"{tf_secs}s", tz="UTC")
df = pd.DataFrame(
{
"date": date,
"open": base,
"high": base + np.random.normal(2, 1, size=size),
"low": base - np.random.normal(2, 1, size=size),
"close": base + np.random.normal(0, 1, size=size),
"volume": np.random.normal(200, size=size),
}
)
df = df.dropna()
return df
def generate_test_data_raw(timeframe: str, size: int, start: str = "2020-07-05", random_seed=42):
"""Generates data in the ohlcv format used by ccxt"""
df = generate_test_data(timeframe, size, start, random_seed)
df["date"] = df.loc[:, "date"].astype(np.int64) // 1000 // 1000
return list(list(x) for x in zip(*(df[x].values.tolist() for x in df.columns)))
# Source: https://stackoverflow.com/questions/29881236/how-to-mock-asyncio-coroutines
# TODO: This should be replaced with AsyncMock once support for python 3.7 is dropped.
def get_mock_coro(return_value=None, side_effect=None):
async def mock_coro(*args, **kwargs):
if side_effect:
if isinstance(side_effect, list):
effect = side_effect.pop(0)
else:
effect = side_effect
if isinstance(effect, Exception):
raise effect
if callable(effect):
return effect(*args, **kwargs)
return effect
else:
return return_value
return Mock(wraps=mock_coro)
def patched_configuration_load_config_file(mocker, config) -> None:
mocker.patch(
"freqtrade.configuration.load_config.load_config_file", lambda *args, **kwargs: config
)
def patch_exchange(
mocker, api_mock=None, exchange="binance", mock_markets=True, mock_supported_modes=True
) -> None:
mocker.patch(f"{EXMS}.validate_config", MagicMock())
mocker.patch(f"{EXMS}.validate_timeframes", MagicMock())
mocker.patch(f"{EXMS}.id", PropertyMock(return_value=exchange))
mocker.patch(f"{EXMS}.name", PropertyMock(return_value=exchange.title()))
mocker.patch(f"{EXMS}.precisionMode", PropertyMock(return_value=2))
mocker.patch(f"{EXMS}.precision_mode_price", PropertyMock(return_value=2))
# Temporary patch ...
mocker.patch("freqtrade.exchange.bybit.Bybit.cache_leverage_tiers")
if mock_markets:
mocker.patch(f"{EXMS}._load_async_markets", return_value={})
if isinstance(mock_markets, bool):
mock_markets = get_markets()
mocker.patch(f"{EXMS}.markets", PropertyMock(return_value=mock_markets))
if mock_supported_modes:
mocker.patch(
f"freqtrade.exchange.{exchange}.{exchange.capitalize()}"
"._supported_trading_mode_margin_pairs",
PropertyMock(
return_value=[
(TradingMode.MARGIN, MarginMode.CROSS),
(TradingMode.MARGIN, MarginMode.ISOLATED),
(TradingMode.FUTURES, MarginMode.CROSS),
(TradingMode.FUTURES, MarginMode.ISOLATED),
]
),
)
if api_mock:
mocker.patch(f"{EXMS}._init_ccxt", return_value=api_mock)
else:
mocker.patch(f"{EXMS}.get_fee", return_value=0.0025)
mocker.patch(f"{EXMS}._init_ccxt", MagicMock())
mocker.patch(f"{EXMS}.timeframes", PropertyMock(return_value=["5m", "15m", "1h", "1d"]))
def get_patched_exchange(
mocker, config, api_mock=None, exchange="binance", mock_markets=True, mock_supported_modes=True
) -> Exchange:
patch_exchange(mocker, api_mock, exchange, mock_markets, mock_supported_modes)
config["exchange"]["name"] = exchange
try:
exchange = ExchangeResolver.load_exchange(config, load_leverage_tiers=True)
except ImportError:
exchange = Exchange(config)
return exchange
def patch_wallet(mocker, free=999.9) -> None:
mocker.patch("freqtrade.wallets.Wallets.get_free", MagicMock(return_value=free))
def patch_whitelist(mocker, conf) -> None:
mocker.patch(
"freqtrade.freqtradebot.FreqtradeBot._refresh_active_whitelist",
MagicMock(return_value=conf["exchange"]["pair_whitelist"]),
)
def patch_edge(mocker) -> None:
# "ETH/BTC",
# "LTC/BTC",
# "XRP/BTC",
# "NEO/BTC"
mocker.patch(
"freqtrade.edge.Edge._cached_pairs",
mocker.PropertyMock(
return_value={
"NEO/BTC": PairInfo(-0.20, 0.66, 3.71, 0.50, 1.71, 10, 25),
"LTC/BTC": PairInfo(-0.21, 0.66, 3.71, 0.50, 1.71, 11, 20),
}
),
)
mocker.patch("freqtrade.edge.Edge.calculate", MagicMock(return_value=True))
# Functions for recurrent object patching
def patch_freqtradebot(mocker, config) -> None:
"""
This function patch _init_modules() to not call dependencies
:param mocker: a Mocker object to apply patches
:param config: Config to pass to the bot
:return: None
"""
mocker.patch("freqtrade.freqtradebot.RPCManager", MagicMock())
patch_exchange(mocker)
mocker.patch("freqtrade.freqtradebot.RPCManager._init", MagicMock())
mocker.patch("freqtrade.freqtradebot.RPCManager.send_msg", MagicMock())
patch_whitelist(mocker, config)
mocker.patch("freqtrade.freqtradebot.ExternalMessageConsumer")
mocker.patch("freqtrade.configuration.config_validation._validate_consumers")
def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
"""
This function patches _init_modules() to not call dependencies
:param mocker: a Mocker object to apply patches
:param config: Config to pass to the bot
:return: FreqtradeBot
"""
patch_freqtradebot(mocker, config)
return FreqtradeBot(config)
def get_patched_worker(mocker, config) -> Worker:
"""
This function patches _init_modules() to not call dependencies
:param mocker: a Mocker object to apply patches
:param config: Config to pass to the bot
:return: Worker
"""
patch_freqtradebot(mocker, config)
return Worker(args=None, config=config)
def patch_get_signal(
freqtrade: FreqtradeBot,
enter_long=True,
exit_long=False,
enter_short=False,
exit_short=False,
enter_tag: Optional[str] = None,
exit_tag: Optional[str] = None,
) -> None:
"""
:param mocker: mocker to patch IStrategy class
:return: None
"""
# returns (Signal-direction, signaname)
def patched_get_entry_signal(*args, **kwargs):
direction = None
if enter_long and not any([exit_long, enter_short]):
direction = SignalDirection.LONG
if enter_short and not any([exit_short, enter_long]):
direction = SignalDirection.SHORT
return direction, enter_tag
freqtrade.strategy.get_entry_signal = patched_get_entry_signal
def patched_get_exit_signal(pair, timeframe, dataframe, is_short):
if is_short:
return enter_short, exit_short, exit_tag
else:
return enter_long, exit_long, exit_tag
# returns (enter, exit)
freqtrade.strategy.get_exit_signal = patched_get_exit_signal
freqtrade.exchange.refresh_latest_ohlcv = lambda p: None
def create_mock_trades(fee, is_short: Optional[bool] = False, use_db: bool = True):
"""
Create some fake trades ...
:param is_short: Optional bool, None creates a mix of long and short trades.
"""
def add_trade(trade):
if use_db:
Trade.session.add(trade)
else:
LocalTrade.add_bt_trade(trade)
is_short1 = is_short if is_short is not None else True
is_short2 = is_short if is_short is not None else False
# Simulate dry_run entries
trade = mock_trade_1(fee, is_short1)
add_trade(trade)
trade = mock_trade_2(fee, is_short1)
add_trade(trade)
trade = mock_trade_3(fee, is_short2)
add_trade(trade)
trade = mock_trade_4(fee, is_short2)
add_trade(trade)
trade = mock_trade_5(fee, is_short2)
add_trade(trade)
trade = mock_trade_6(fee, is_short1)
add_trade(trade)
if use_db:
Trade.commit()
def create_mock_trades_with_leverage(fee, use_db: bool = True):
"""
Create some fake trades ...
"""
if use_db:
Trade.session.rollback()
def add_trade(trade):
if use_db:
Trade.session.add(trade)
else:
LocalTrade.add_bt_trade(trade)
# Simulate dry_run entries
trade = mock_trade_1(fee, False)
add_trade(trade)
trade = mock_trade_2(fee, False)
add_trade(trade)
trade = mock_trade_3(fee, False)
add_trade(trade)
trade = mock_trade_4(fee, False)
add_trade(trade)
trade = mock_trade_5(fee, False)
add_trade(trade)
trade = mock_trade_6(fee, False)
add_trade(trade)
trade = short_trade(fee)
add_trade(trade)
trade = leverage_trade(fee)
add_trade(trade)
if use_db:
Trade.session.flush()
def create_mock_trades_usdt(fee, is_short: Optional[bool] = False, use_db: bool = True):
"""
Create some fake trades ...
"""
def add_trade(trade):
if use_db:
Trade.session.add(trade)
else:
LocalTrade.add_bt_trade(trade)
is_short1 = is_short if is_short is not None else True
is_short2 = is_short if is_short is not None else False
# Simulate dry_run entries
trade = mock_trade_usdt_1(fee, is_short1)
add_trade(trade)
trade = mock_trade_usdt_2(fee, is_short1)
add_trade(trade)
trade = mock_trade_usdt_3(fee, is_short1)
add_trade(trade)
trade = mock_trade_usdt_4(fee, is_short2)
add_trade(trade)
trade = mock_trade_usdt_5(fee, is_short2)
add_trade(trade)
trade = mock_trade_usdt_6(fee, is_short1)
add_trade(trade)
trade = mock_trade_usdt_7(fee, is_short1)
add_trade(trade)
if use_db:
Trade.commit()
@pytest.fixture(autouse=True)
def patch_gc(mocker) -> None:
mocker.patch("freqtrade.main.gc_set_threshold")
@pytest.fixture(autouse=True)
def user_dir(mocker, tmp_path) -> Path:
user_dir = tmp_path / "user_data"
mocker.patch("freqtrade.configuration.configuration.create_userdata_dir", return_value=user_dir)
return user_dir
@pytest.fixture(autouse=True)
def patch_coingecko(mocker) -> None:
"""
Mocker to coingecko to speed up tests
:param mocker: mocker to patch coingecko class
:return: None
"""
tickermock = MagicMock(return_value={"bitcoin": {"usd": 12345.0}, "ethereum": {"usd": 12345.0}})
listmock = MagicMock(
return_value=[
{"id": "bitcoin", "name": "Bitcoin", "symbol": "btc", "website_slug": "bitcoin"},
{"id": "ethereum", "name": "Ethereum", "symbol": "eth", "website_slug": "ethereum"},
]
)
mocker.patch.multiple(
"freqtrade.rpc.fiat_convert.FtCoinGeckoApi",
get_price=tickermock,
get_coins_list=listmock,
)
@pytest.fixture(scope="function")
def init_persistence(default_conf):
init_db(default_conf["db_url"])
@pytest.fixture(scope="function")
def default_conf(testdatadir):
return get_default_conf(testdatadir)
@pytest.fixture(scope="function")
def default_conf_usdt(testdatadir):
return get_default_conf_usdt(testdatadir)
def get_default_conf(testdatadir):
"""Returns validated configuration suitable for most tests"""
configuration = {
"max_open_trades": 1,
"stake_currency": "BTC",
"stake_amount": 0.001,
"fiat_display_currency": "USD",
"timeframe": "5m",
"dry_run": True,
"cancel_open_orders_on_exit": False,
"minimal_roi": {"40": 0.0, "30": 0.01, "20": 0.02, "0": 0.04},
"dry_run_wallet": 1000,
"stoploss": -0.10,
"unfilledtimeout": {"entry": 10, "exit": 30},
"entry_pricing": {
"price_last_balance": 0.0,
"use_order_book": False,
"order_book_top": 1,
"check_depth_of_market": {"enabled": False, "bids_to_ask_delta": 1},
},
"exit_pricing": {
"use_order_book": False,
"order_book_top": 1,
},
"exchange": {
"name": "binance",
"key": "key",
"enable_ws": False,
"secret": "secret",
"pair_whitelist": ["ETH/BTC", "LTC/BTC", "XRP/BTC", "NEO/BTC"],
"pair_blacklist": [
"DOGE/BTC",
"HOT/BTC",
],
},
"pairlists": [{"method": "StaticPairList"}],
"telegram": {
"enabled": False,
"token": "token",
"chat_id": "0",
"notification_settings": {},
},
"datadir": Path(testdatadir),
"initial_state": "running",
"db_url": "sqlite://",
"user_data_dir": Path("user_data"),
"verbosity": 3,
"strategy_path": str(Path(__file__).parent / "strategy" / "strats"),
"strategy": CURRENT_TEST_STRATEGY,
"disableparamexport": True,
"internals": {},
"export": "none",
"dataformat_ohlcv": "feather",
"dataformat_trades": "feather",
"runmode": "dry_run",
"candle_type_def": CandleType.SPOT,
}
return configuration
def get_default_conf_usdt(testdatadir):
configuration = get_default_conf(testdatadir)
configuration.update(
{
"stake_amount": 60.0,
"stake_currency": "USDT",
"exchange": {
"name": "binance",
"enabled": True,
"key": "key",
"enable_ws": False,
"secret": "secret",
"pair_whitelist": [
"ETH/USDT",
"LTC/USDT",
"XRP/USDT",
"NEO/USDT",
"TKN/USDT",
],
"pair_blacklist": [
"DOGE/USDT",
"HOT/USDT",
],
},
}
)
return configuration
@pytest.fixture
def fee():
return MagicMock(return_value=0.0025)
@pytest.fixture
def ticker():
return MagicMock(
return_value={
"bid": 0.00001098,
"ask": 0.00001099,
"last": 0.00001098,
}
)
@pytest.fixture
def ticker_sell_up():
return MagicMock(
return_value={
"bid": 0.00001172,
"ask": 0.00001173,
"last": 0.00001172,
}
)
@pytest.fixture
def ticker_sell_down():
return MagicMock(
return_value={
"bid": 0.00001044,
"ask": 0.00001043,
"last": 0.00001044,
}
)
@pytest.fixture
def ticker_usdt():
return MagicMock(
return_value={
"bid": 2.0,
"ask": 2.02,
"last": 2.0,
}
)
@pytest.fixture
def ticker_usdt_sell_up():
return MagicMock(
return_value={
"bid": 2.2,
"ask": 2.3,
"last": 2.2,
}
)
@pytest.fixture
def ticker_usdt_sell_down():
return MagicMock(
return_value={
"bid": 2.01,
"ask": 2.0,
"last": 2.01,
}
)
@pytest.fixture
def markets():
return get_markets()
def get_markets():
# See get_markets_static() for immutable markets and do not modify them unless absolutely
# necessary!
return {
"ETH/BTC": {
"id": "ethbtc",
"symbol": "ETH/BTC",
"base": "ETH",
"quote": "BTC",
"active": True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"precision": {
"price": 8,
"amount": 8,
"cost": 8,
},
"lot": 0.00000001,
"contractSize": None,
"limits": {
"amount": {
"min": 0.01,
"max": 100000000,
},
"price": {
"min": None,
"max": 500000,
},
"cost": {
"min": 0.0001,
"max": 500000,
},
"leverage": {"min": 1.0, "max": 2.0},
},
},
"TKN/BTC": {
"id": "tknbtc",
"symbol": "TKN/BTC",
"base": "TKN",
"quote": "BTC",
# According to ccxt, markets without active item set are also active
# 'active': True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"precision": {
"price": 8,
"amount": 8,
"cost": 8,
},
"lot": 0.00000001,
"contractSize": None,
"limits": {
"amount": {
"min": 0.01,
"max": 100000000,
},
"price": {
"min": None,
"max": 500000,
},
"cost": {
"min": 0.0001,
"max": 500000,
},
"leverage": {"min": 1.0, "max": 5.0},
},
},
"BLK/BTC": {
"id": "blkbtc",
"symbol": "BLK/BTC",
"base": "BLK",
"quote": "BTC",
"active": True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"precision": {
"price": 8,
"amount": 8,
"cost": 8,
},
"lot": 0.00000001,
"contractSize": None,
"limits": {
"amount": {
"min": 0.01,
"max": 1000,
},
"price": {
"min": None,
"max": 500000,
},
"cost": {
"min": 0.0001,
"max": 500000,
},
"leverage": {"min": 1.0, "max": 3.0},
},
},
"LTC/BTC": {
"id": "ltcbtc",
"symbol": "LTC/BTC",
"base": "LTC",
"quote": "BTC",
"active": True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"precision": {
"price": 8,
"amount": 8,
"cost": 8,
},
"lot": 0.00000001,
"contractSize": None,
"limits": {
"amount": {
"min": 0.01,
"max": 100000000,
},
"price": {
"min": None,
"max": 500000,
},
"cost": {
"min": 0.0001,
"max": 500000,
},
"leverage": {"min": None, "max": None},
},
"info": {},
},
"XRP/BTC": {
"id": "xrpbtc",
"symbol": "XRP/BTC",
"base": "XRP",
"quote": "BTC",
"active": True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"precision": {
"price": 8,
"amount": 8,
"cost": 8,
},
"lot": 0.00000001,
"contractSize": None,
"limits": {
"amount": {
"min": 0.01,
"max": 100000000,
},
"price": {
"min": None,
"max": 500000,
},
"cost": {
"min": 0.0001,
"max": 500000,
},
"leverage": {
"min": None,
"max": None,
},
},
"info": {},
},
"NEO/BTC": {
"id": "neobtc",
"symbol": "NEO/BTC",
"base": "NEO",
"quote": "BTC",
"active": True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"precision": {
"price": 8,
"amount": 8,
"cost": 8,
},
"lot": 0.00000001,
"contractSize": None,
"limits": {
"amount": {
"min": 0.01,
"max": 100000000,
},
"price": {
"min": None,
"max": 500000,
},
"cost": {
"min": 0.0001,
"max": 500000,
},
"leverage": {
"min": None,
"max": None,
},
},
"info": {},
},
"BTT/BTC": {
"id": "BTTBTC",
"symbol": "BTT/BTC",
"base": "BTT",
"quote": "BTC",
"active": False,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"contractSize": None,
"precision": {"base": 8, "quote": 8, "amount": 0, "price": 8},
"limits": {
"amount": {"min": 1.0, "max": 90000000.0},
"price": {"min": None, "max": None},
"cost": {"min": 0.0001, "max": None},
"leverage": {
"min": None,
"max": None,
},
},
"info": {},
},
"ETH/USDT": {
"id": "USDT-ETH",
"symbol": "ETH/USDT",
"base": "ETH",
"quote": "USDT",
"settle": None,
"baseId": "ETH",
"quoteId": "USDT",
"settleId": None,
"type": "spot",
"spot": True,
"margin": True,
"swap": True,
"future": True,
"option": False,
"active": True,
"contract": None,
"linear": None,
"inverse": None,
"taker": 0.0006,
"maker": 0.0002,
"contractSize": None,
"expiry": None,
"expiryDateTime": None,
"strike": None,
"optionType": None,
"precision": {
"amount": 8,
"price": 8,
},
"limits": {
"leverage": {
"min": 1,
"max": 100,
},
"amount": {
"min": 0.02214286,
"max": None,
},
"price": {
"min": 1e-08,
"max": None,
},
"cost": {
"min": None,
"max": None,
},
},
"info": {
"maintenance_rate": "0.005",
},
},
"BTC/USDT": {
"id": "USDT-BTC",
"symbol": "BTC/USDT",
"base": "BTC",
"quote": "USDT",
"settle": None,
"baseId": "BTC",
"quoteId": "USDT",
"settleId": None,
"type": "spot",
"spot": True,
"margin": True,
"swap": False,
"future": False,
"option": False,
"active": True,
"contract": None,
"linear": None,
"inverse": None,
"taker": 0.0006,
"maker": 0.0002,
"contractSize": None,
"expiry": None,
"expiryDateTime": None,
"strike": None,
"optionType": None,
"precision": {
"amount": 4,
"price": 4,
},
"limits": {
"leverage": {
"min": 1,
"max": 100,
},
"amount": {
"min": 0.000221,
"max": None,
},
"price": {
"min": 1e-02,
"max": None,
},
"cost": {
"min": None,
"max": None,
},
},
"info": {
"maintenance_rate": "0.005",
},
},
"LTC/USDT": {
"id": "USDT-LTC",
"symbol": "LTC/USDT",
"base": "LTC",
"quote": "USDT",
"active": False,
"spot": True,
"future": True,
"swap": True,
"margin": True,
"linear": None,
"inverse": False,
"type": "spot",
"contractSize": None,
"taker": 0.0006,
"maker": 0.0002,
"precision": {"amount": 8, "price": 8},
"limits": {
"amount": {"min": 0.06646786, "max": None},
"price": {"min": 1e-08, "max": None},
"leverage": {
"min": None,
"max": None,
},
"cost": {
"min": None,
"max": None,
},
},
"info": {},
},
"XRP/USDT": {
"id": "xrpusdt",
"symbol": "XRP/USDT",
"base": "XRP",
"quote": "USDT",
"active": True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"taker": 0.0006,
"maker": 0.0002,
"precision": {
"price": 8,
"amount": 8,
"cost": 8,
},
"lot": 0.00000001,
"contractSize": None,
"limits": {
"amount": {
"min": 0.01,
"max": 1000,
},
"price": {
"min": None,
"max": 500000,
},
"cost": {
"min": 0.0001,
"max": 500000,
},
},
"info": {},
},
"NEO/USDT": {
"id": "neousdt",
"symbol": "NEO/USDT",
"base": "NEO",
"quote": "USDT",
"settle": "",
"baseId": "NEO",
"quoteId": "USDT",
"settleId": "",
"type": "spot",
"spot": True,
"margin": True,
"swap": False,
"futures": False,
"option": False,
"active": True,
"contract": False,
"linear": None,
"inverse": None,
"taker": 0.0006,
"maker": 0.0002,
"contractSize": None,
"expiry": None,
"expiryDatetime": None,
"strike": None,
"optionType": None,
"tierBased": None,
"percentage": None,
"lot": 0.00000001,
"precision": {
"price": 8,
"amount": 8,
"cost": 8,
},
"limits": {
"leverage": {"min": 1, "max": 10},
"amount": {
"min": 0.01,
"max": 1000,
},
"price": {
"min": None,
"max": 500000,
},
"cost": {
"min": 0.0001,
"max": 500000,
},
},
"info": {},
},
"TKN/USDT": {
"id": "tknusdt",
"symbol": "TKN/USDT",
"base": "TKN",
"quote": "USDT",
"active": True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"contractSize": None,
"taker": 0.0006,
"maker": 0.0002,
"precision": {
"price": 8,
"amount": 8,
"cost": 8,
},
"lot": 0.00000001,
"limits": {
"amount": {
"min": 0.01,
"max": 100000000000,
},
"price": {"min": None, "max": 500000},
"cost": {
"min": 0.0001,
"max": 500000,
},
"leverage": {
"min": None,
"max": None,
},
},
"info": {},
},
"LTC/USD": {
"id": "USD-LTC",
"symbol": "LTC/USD",
"base": "LTC",
"quote": "USD",
"active": True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"contractSize": None,
"precision": {"amount": 8, "price": 8},
"limits": {
"amount": {"min": 0.06646786, "max": None},
"price": {"min": 1e-08, "max": None},
"leverage": {
"min": None,
"max": None,
},
"cost": {
"min": None,
"max": None,
},
},
"info": {},
},
"XLTCUSDT": {
"id": "xLTCUSDT",
"symbol": "XLTCUSDT",
"base": "LTC",
"quote": "USDT",
"active": True,
"spot": False,
"type": "swap",
"contractSize": 0.01,
"swap": False,
"linear": False,
"taker": 0.0006,
"maker": 0.0002,
"precision": {"amount": 8, "price": 8},
"limits": {
"leverage": {
"min": None,
"max": None,
},
"amount": {"min": 0.06646786, "max": None},
"price": {"min": 1e-08, "max": None},
"cost": {
"min": None,
"max": None,
},
},
"info": {},
},
"LTC/ETH": {
"id": "LTCETH",
"symbol": "LTC/ETH",
"base": "LTC",
"quote": "ETH",
"active": True,
"spot": True,
"swap": False,
"linear": None,
"type": "spot",
"contractSize": None,
"precision": {"base": 8, "quote": 8, "amount": 3, "price": 5},
"limits": {
"leverage": {
"min": None,
"max": None,
},
"amount": {"min": 0.001, "max": 10000000.0},
"price": {"min": 1e-05, "max": 1000.0},
"cost": {"min": 0.01, "max": None},
},
"info": {},
},
"ETH/USDT:USDT": {
"id": "ETH_USDT",
"symbol": "ETH/USDT:USDT",
"base": "ETH",
"quote": "USDT",
"settle": "USDT",
"baseId": "ETH",
"quoteId": "USDT",
"settleId": "USDT",
"type": "swap",
"spot": False,
"margin": False,
"swap": True,
"future": True, # Binance mode ...
"option": False,
"contract": True,
"linear": True,
"inverse": False,
"tierBased": False,
"percentage": True,
"taker": 0.0006,
"maker": 0.0002,
"contractSize": 10,
"active": True,
"expiry": None,
"expiryDatetime": None,
"strike": None,
"optionType": None,
"limits": {
"leverage": {"min": 1, "max": 100},
"amount": {"min": 1, "max": 300000},
"price": {
"min": None,
"max": None,
},
"cost": {
"min": None,
"max": None,
},
},
"precision": {"price": 0.05, "amount": 1},
"info": {},
},
"ADA/USDT:USDT": {
"limits": {
"leverage": {
"min": 1,
"max": 20,
},
"amount": {
"min": 1,
"max": 1000000,
},
"price": {
"min": 0.52981,
"max": 1.58943,
},
"cost": {
"min": None,
"max": None,
},
},
"precision": {"amount": 1, "price": 0.00001},
"tierBased": True,
"percentage": True,
"taker": 0.0000075,
"maker": -0.0000025,
"feeSide": "get",
"tiers": {
"maker": [
[0, 0.002],
[1.5, 0.00185],
[3, 0.00175],
[6, 0.00165],
[12.5, 0.00155],
[25, 0.00145],
[75, 0.00135],
[200, 0.00125],
[500, 0.00115],
[1250, 0.00105],
[2500, 0.00095],
[3000, 0.00085],
[6000, 0.00075],
[11000, 0.00065],
[20000, 0.00055],
[40000, 0.00055],
[75000, 0.00055],
],
"taker": [
[0, 0.002],
[1.5, 0.00195],
[3, 0.00185],
[6, 0.00175],
[12.5, 0.00165],
[25, 0.00155],
[75, 0.00145],
[200, 0.00135],
[500, 0.00125],
[1250, 0.00115],
[2500, 0.00105],
[3000, 0.00095],
[6000, 0.00085],
[11000, 0.00075],
[20000, 0.00065],
[40000, 0.00065],
[75000, 0.00065],
],
},
"id": "ADA_USDT",
"symbol": "ADA/USDT:USDT",
"base": "ADA",
"quote": "USDT",
"settle": "USDT",
"baseId": "ADA",
"quoteId": "USDT",
"settleId": "usdt",
"type": "swap",
"spot": False,
"margin": False,
"swap": True,
"future": True, # Binance mode ...
"option": False,
"active": True,
"contract": True,
"linear": True,
"inverse": False,
"contractSize": 0.01,
"expiry": None,
"expiryDatetime": None,
"strike": None,
"optionType": None,
"info": {},
},
"SOL/BUSD:BUSD": {
"limits": {
"leverage": {"min": None, "max": None},
"amount": {"min": 1, "max": 1000000},
"price": {"min": 0.04, "max": 100000},
"cost": {"min": 5, "max": None},
"market": {"min": 1, "max": 1500},
},
"precision": {"amount": 0, "price": 2, "base": 8, "quote": 8},
"tierBased": False,
"percentage": True,
"taker": 0.0004,
"maker": 0.0002,
"feeSide": "get",
"id": "SOLBUSD",
"lowercaseId": "solbusd",
"symbol": "SOL/BUSD",
"base": "SOL",
"quote": "BUSD",
"settle": "BUSD",
"baseId": "SOL",
"quoteId": "BUSD",
"settleId": "BUSD",
"type": "future",
"spot": False,
"margin": False,
"future": True,
"delivery": False,
"option": False,
"active": True,
"contract": True,
"linear": True,
"inverse": False,
"contractSize": 1,
"expiry": None,
"expiryDatetime": None,
"strike": None,
"optionType": None,
"info": {
"symbol": "SOLBUSD",
"pair": "SOLBUSD",
"contractType": "PERPETUAL",
"deliveryDate": "4133404800000",
"onboardDate": "1630566000000",
"status": "TRADING",
"maintMarginPercent": "2.5000",
"requiredMarginPercent": "5.0000",
"baseAsset": "SOL",
"quoteAsset": "BUSD",
"marginAsset": "BUSD",
"pricePrecision": "4",
"quantityPrecision": "0",
"baseAssetPrecision": "8",
"quotePrecision": "8",
"underlyingType": "COIN",
"underlyingSubType": [],
"settlePlan": "0",
"triggerProtect": "0.0500",
"liquidationFee": "0.005000",
"marketTakeBound": "0.05",
"filters": [
{
"minPrice": "0.0400",
"maxPrice": "100000",
"filterType": "PRICE_FILTER",
"tickSize": "0.0100",
},
{"stepSize": "1", "filterType": "LOT_SIZE", "maxQty": "1000000", "minQty": "1"},
{
"stepSize": "1",
"filterType": "MARKET_LOT_SIZE",
"maxQty": "1500",
"minQty": "1",
},
{"limit": "200", "filterType": "MAX_NUM_ORDERS"},
{"limit": "10", "filterType": "MAX_NUM_ALGO_ORDERS"},
{"notional": "5", "filterType": "MIN_NOTIONAL"},
{
"multiplierDown": "0.9500",
"multiplierUp": "1.0500",
"multiplierDecimal": "4",
"filterType": "PERCENT_PRICE",
},
],
"orderTypes": [
"LIMIT",
"MARKET",
"STOP",
"STOP_MARKET",
"TAKE_PROFIT",
"TAKE_PROFIT_MARKET",
"TRAILING_STOP_MARKET",
],
"timeInForce": ["GTC", "IOC", "FOK", "GTX"],
},
},
}
@pytest.fixture
def markets_static():
# These markets are used in some tests that would need adaptation should anything change in
# market list. Do not modify this list without a good reason! Do not modify market parameters
# of listed pairs in get_markets() without a good reason either!
static_markets = [
"BLK/BTC",
"BTT/BTC",
"ETH/BTC",
"ETH/USDT",
"LTC/BTC",
"LTC/ETH",
"LTC/USD",
"LTC/USDT",
"NEO/BTC",
"TKN/BTC",
"XLTCUSDT",
"XRP/BTC",
"ADA/USDT:USDT",
"ETH/USDT:USDT",
]
all_markets = get_markets()
return {m: all_markets[m] for m in static_markets}
@pytest.fixture
def shitcoinmarkets(markets_static):
"""
Fixture with shitcoin markets - used to test filters in pairlists
"""
shitmarkets = deepcopy(markets_static)
shitmarkets.update(
{
"HOT/BTC": {
"id": "HOTBTC",
"symbol": "HOT/BTC",
"base": "HOT",
"quote": "BTC",
"active": True,
"spot": True,
"type": "spot",
"precision": {"base": 8, "quote": 8, "amount": 0, "price": 8},
"limits": {
"amount": {"min": 1.0, "max": 90000000.0},
"price": {"min": None, "max": None},
"cost": {"min": 0.001, "max": None},
},
"info": {},
},
"FUEL/BTC": {
"id": "FUELBTC",
"symbol": "FUEL/BTC",
"base": "FUEL",
"quote": "BTC",
"active": True,
"spot": True,
"type": "spot",
"precision": {"base": 8, "quote": 8, "amount": 0, "price": 8},
"limits": {
"amount": {"min": 1.0, "max": 90000000.0},
"price": {"min": 1e-08, "max": 1000.0},
"cost": {"min": 0.001, "max": None},
},
"info": {},
},
"NANO/USDT": {
"percentage": True,
"tierBased": False,
"taker": 0.001,
"maker": 0.001,
"precision": {"base": 8, "quote": 8, "amount": 2, "price": 4},
"limits": {
"leverage": {
"min": None,
"max": None,
},
"amount": {
"min": None,
"max": None,
},
"price": {
"min": None,
"max": None,
},
"cost": {
"min": None,
"max": None,
},
},
"id": "NANOUSDT",
"symbol": "NANO/USDT",
"base": "NANO",
"quote": "USDT",
"baseId": "NANO",
"quoteId": "USDT",
"info": {},
"type": "spot",
"spot": True,
"future": False,
"active": True,
},
"ADAHALF/USDT": {
"percentage": True,
"tierBased": False,
"taker": 0.001,
"maker": 0.001,
"precision": {"base": 8, "quote": 8, "amount": 2, "price": 4},
"limits": {
"leverage": {
"min": None,
"max": None,
},
"amount": {
"min": None,
"max": None,
},
"price": {
"min": None,
"max": None,
},
"cost": {
"min": None,
"max": None,
},
},
"id": "ADAHALFUSDT",
"symbol": "ADAHALF/USDT",
"base": "ADAHALF",
"quote": "USDT",
"baseId": "ADAHALF",
"quoteId": "USDT",
"info": {},
"type": "spot",
"spot": True,
"future": False,
"active": True,
},
"ADADOUBLE/USDT": {
"percentage": True,
"tierBased": False,
"taker": 0.001,
"maker": 0.001,
"precision": {"base": 8, "quote": 8, "amount": 2, "price": 4},
"limits": {
"leverage": {
"min": None,
"max": None,
},
"amount": {
"min": None,
"max": None,
},
"price": {
"min": None,
"max": None,
},
"cost": {
"min": None,
"max": None,
},
},
"id": "ADADOUBLEUSDT",
"symbol": "ADADOUBLE/USDT",
"base": "ADADOUBLE",
"quote": "USDT",
"baseId": "ADADOUBLE",
"quoteId": "USDT",
"info": {},
"type": "spot",
"spot": True,
"future": False,
"active": True,
},
}
)
return shitmarkets
@pytest.fixture
def markets_empty():
return MagicMock(return_value=[])
@pytest.fixture(scope="function")
def limit_buy_order_open():
return {
"id": "mocked_limit_buy",
"type": "limit",
"side": "buy",
"symbol": "mocked",
"timestamp": dt_ts(),
"datetime": dt_now().isoformat(),
"price": 0.00001099,
"average": 0.00001099,
"amount": 90.99181073,
"filled": 0.0,
"cost": 0.0009999,
"remaining": 90.99181073,
"status": "open",
}
@pytest.fixture(scope="function")
def limit_buy_order(limit_buy_order_open):
order = deepcopy(limit_buy_order_open)
order["status"] = "closed"
order["filled"] = order["amount"]
order["remaining"] = 0.0
return order
@pytest.fixture
def limit_buy_order_old():
return {
"id": "mocked_limit_buy_old",
"type": "limit",
"side": "buy",
"symbol": "mocked",
"datetime": (dt_now() - timedelta(minutes=601)).isoformat(),
"timestamp": dt_ts(dt_now() - timedelta(minutes=601)),
"price": 0.00001099,
"amount": 90.99181073,
"filled": 0.0,
"remaining": 90.99181073,
"status": "open",
}
@pytest.fixture
def limit_sell_order_old():
return {
"id": "mocked_limit_sell_old",
"type": "limit",
"side": "sell",
"symbol": "ETH/BTC",
"timestamp": dt_ts(dt_now() - timedelta(minutes=601)),
"datetime": (dt_now() - timedelta(minutes=601)).isoformat(),
"price": 0.00001099,
"amount": 90.99181073,
"filled": 0.0,
"remaining": 90.99181073,
"status": "open",
}
@pytest.fixture
def limit_buy_order_old_partial():
return {
"id": "mocked_limit_buy_old_partial",
"type": "limit",
"side": "buy",
"symbol": "ETH/BTC",
"timestamp": dt_ts(dt_now() - timedelta(minutes=601)),
"datetime": (dt_now() - timedelta(minutes=601)).isoformat(),
"price": 0.00001099,
"amount": 90.99181073,
"filled": 23.0,
"cost": 90.99181073 * 23.0,
"remaining": 67.99181073,
"status": "open",
}
@pytest.fixture
def limit_buy_order_old_partial_canceled(limit_buy_order_old_partial):
res = deepcopy(limit_buy_order_old_partial)
res["status"] = "canceled"
res["fee"] = {"cost": 0.023, "currency": "ETH"}
return res
@pytest.fixture(scope="function")
def limit_buy_order_canceled_empty(request):
# Indirect fixture
# Documentation:
# https://docs.pytest.org/en/latest/example/parametrize.html#apply-indirect-on-particular-arguments
exchange_name = request.param
if exchange_name == "kraken":
return {
"info": {},
"id": "AZNPFF-4AC4N-7MKTAT",
"clientOrderId": None,
"timestamp": dt_ts(dt_now() - timedelta(minutes=601)),
"datetime": (dt_now() - timedelta(minutes=601)).isoformat(),
"lastTradeTimestamp": None,
"status": "canceled",
"symbol": "LTC/USDT",
"type": "limit",
"side": "buy",
"price": 34.3225,
"cost": 0.0,
"amount": 0.55,
"filled": 0.0,
"average": 0.0,
"remaining": 0.55,
"fee": {"cost": 0.0, "rate": None, "currency": "USDT"},
"trades": [],
}
elif exchange_name == "binance":
return {
"info": {},
"id": "1234512345",
"clientOrderId": "alb1234123",
"timestamp": dt_ts(dt_now() - timedelta(minutes=601)),
"datetime": (dt_now() - timedelta(minutes=601)).isoformat(),
"lastTradeTimestamp": None,
"symbol": "LTC/USDT",
"type": "limit",
"side": "buy",
"price": 0.016804,
"amount": 0.55,
"cost": 0.0,
"average": None,
"filled": 0.0,
"remaining": 0.55,
"status": "canceled",
"fee": None,
"trades": None,
}
else:
return {
"info": {},
"id": "1234512345",
"clientOrderId": "alb1234123",
"timestamp": dt_ts(dt_now() - timedelta(minutes=601)),
"datetime": (dt_now() - timedelta(minutes=601)).isoformat(),
"lastTradeTimestamp": None,
"symbol": "LTC/USDT",
"type": "limit",
"side": "buy",
"price": 0.016804,
"amount": 0.55,
"cost": 0.0,
"average": None,
"filled": 0.0,
"remaining": 0.55,
"status": "canceled",
"fee": None,
"trades": None,
}
@pytest.fixture
def limit_sell_order_open():
return {
"id": "mocked_limit_sell",
"type": "limit",
"side": "sell",
"symbol": "mocked",
"datetime": dt_now().isoformat(),
"timestamp": dt_ts(),
"price": 0.00001173,
"amount": 90.99181073,
"filled": 0.0,
"remaining": 90.99181073,
"status": "open",
}
@pytest.fixture
def limit_sell_order(limit_sell_order_open):
order = deepcopy(limit_sell_order_open)
order["remaining"] = 0.0
order["filled"] = order["amount"]
order["status"] = "closed"
return order
@pytest.fixture
def order_book_l2():
return MagicMock(
return_value={
"bids": [
[0.043936, 10.442],
[0.043935, 31.865],
[0.043933, 11.212],
[0.043928, 0.088],
[0.043925, 10.0],
[0.043921, 10.0],
[0.04392, 37.64],
[0.043899, 0.066],
[0.043885, 0.676],
[0.04387, 22.758],
],
"asks": [
[0.043949, 0.346],
[0.04395, 0.608],
[0.043951, 3.948],
[0.043954, 0.288],
[0.043958, 9.277],
[0.043995, 1.566],
[0.044, 0.588],
[0.044002, 0.992],
[0.044003, 0.095],
[0.04402, 37.64],
],
"timestamp": None,
"datetime": None,
"nonce": 288004540,
}
)
@pytest.fixture
def order_book_l2_usd():
return MagicMock(
return_value={
"symbol": "LTC/USDT",
"bids": [
[25.563, 49.269],
[25.562, 83.0],
[25.56, 106.0],
[25.559, 15.381],
[25.558, 29.299],
[25.557, 34.624],
[25.556, 10.0],
[25.555, 14.684],
[25.554, 45.91],
[25.553, 50.0],
],
"asks": [
[25.566, 14.27],
[25.567, 48.484],
[25.568, 92.349],
[25.572, 31.48],
[25.573, 23.0],
[25.574, 20.0],
[25.575, 89.606],
[25.576, 262.016],
[25.577, 178.557],
[25.578, 78.614],
],
"timestamp": None,
"datetime": None,
"nonce": 2372149736,
}
)
@pytest.fixture
def ohlcv_history_list():
return [
[
1511686200000, # unix timestamp ms
8.794e-05, # open
8.948e-05, # high
8.794e-05, # low
8.88e-05, # close
0.0877869, # volume (in quote currency)
],
[
1511686500000,
8.88e-05,
8.942e-05,
8.88e-05,
8.893e-05,
0.05874751,
],
[1511686800000, 8.891e-05, 8.893e-05, 8.875e-05, 8.877e-05, 0.7039405],
]
@pytest.fixture
def ohlcv_history(ohlcv_history_list):
return ohlcv_to_dataframe(
ohlcv_history_list, "5m", pair="UNITTEST/BTC", fill_missing=True, drop_incomplete=False
)
@pytest.fixture
def tickers():
return MagicMock(
return_value={
"ETH/BTC": {
"symbol": "ETH/BTC",
"timestamp": 1522014806207,
"datetime": "2018-03-25T21:53:26.207Z",
"high": 0.061697,
"low": 0.060531,
"bid": 0.061588,
"bidVolume": 3.321,
"ask": 0.061655,
"askVolume": 0.212,
"vwap": 0.06105296,
"open": 0.060809,
"close": 0.060761,
"first": None,
"last": 0.061588,
"change": 1.281,
"percentage": None,
"average": None,
"baseVolume": 111649.001,
"quoteVolume": 6816.50176926,
"info": {},
},
"TKN/BTC": {
"symbol": "TKN/BTC",
"timestamp": 1522014806169,
"datetime": "2018-03-25T21:53:26.169Z",
"high": 0.01885,
"low": 0.018497,
"bid": 0.018799,
"bidVolume": 8.38,
"ask": 0.018802,
"askVolume": 15.0,
"vwap": 0.01869197,
"open": 0.018585,
"close": 0.018573,
"last": 0.018799,
"baseVolume": 81058.66,
"quoteVolume": 2247.48374509,
},
"BLK/BTC": {
"symbol": "BLK/BTC",
"timestamp": 1522014806072,
"datetime": "2018-03-25T21:53:26.072Z",
"high": 0.007745,
"low": 0.007512,
"bid": 0.007729,
"bidVolume": 0.01,
"ask": 0.007743,
"askVolume": 21.37,
"vwap": 0.00761466,
"open": 0.007653,
"close": 0.007652,
"first": None,
"last": 0.007743,
"change": 1.176,
"percentage": None,
"average": None,
"baseVolume": 295152.26,
"quoteVolume": 1515.14631229,
"info": {},
},
"LTC/BTC": {
"symbol": "LTC/BTC",
"timestamp": 1523787258992,
"datetime": "2018-04-15T10:14:19.992Z",
"high": 0.015978,
"low": 0.0157,
"bid": 0.015954,
"bidVolume": 12.83,
"ask": 0.015957,
"askVolume": 0.49,
"vwap": 0.01581636,
"open": 0.015823,
"close": 0.01582,
"first": None,
"last": 0.015951,
"change": 0.809,
"percentage": None,
"average": None,
"baseVolume": 88620.68,
"quoteVolume": 1401.65697943,
"info": {},
},
"BTT/BTC": {
"symbol": "BTT/BTC",
"timestamp": 1550936557206,
"datetime": "2019-02-23T15:42:37.206Z",
"high": 0.00000026,
"low": 0.00000024,
"bid": 0.00000024,
"bidVolume": 2446894197.0,
"ask": 0.00000025,
"askVolume": 2447913837.0,
"vwap": 0.00000025,
"open": 0.00000026,
"close": 0.00000024,
"last": 0.00000024,
"previousClose": 0.00000026,
"change": -0.00000002,
"percentage": -7.692,
"average": None,
"baseVolume": 4886464537.0,
"quoteVolume": 1215.14489611,
"info": {},
},
"HOT/BTC": {
"symbol": "HOT/BTC",
"timestamp": 1572273518661,
"datetime": "2019-10-28T14:38:38.661Z",
"high": 0.00000011,
"low": 0.00000009,
"bid": 0.0000001,
"bidVolume": 1476027288.0,
"ask": 0.00000011,
"askVolume": 820153831.0,
"vwap": 0.0000001,
"open": 0.00000009,
"close": 0.00000011,
"last": 0.00000011,
"previousClose": 0.00000009,
"change": 0.00000002,
"percentage": 22.222,
"average": None,
"baseVolume": 1442290324.0,
"quoteVolume": 143.78311994,
"info": {},
},
"FUEL/BTC": {
"symbol": "FUEL/BTC",
"timestamp": 1572340250771,
"datetime": "2019-10-29T09:10:50.771Z",
"high": 0.00000040,
"low": 0.00000035,
"bid": 0.00000036,
"bidVolume": 8932318.0,
"ask": 0.00000037,
"askVolume": 10140774.0,
"vwap": 0.00000037,
"open": 0.00000039,
"close": 0.00000037,
"last": 0.00000037,
"previousClose": 0.00000038,
"change": -0.00000002,
"percentage": -5.128,
"average": None,
"baseVolume": 168927742.0,
"quoteVolume": 62.68220262,
"info": {},
},
"BTC/USDT": {
"symbol": "BTC/USDT",
"timestamp": 1573758371399,
"datetime": "2019-11-14T19:06:11.399Z",
"high": 8800.0,
"low": 8582.6,
"bid": 8648.16,
"bidVolume": 0.238771,
"ask": 8648.72,
"askVolume": 0.016253,
"vwap": 8683.13647806,
"open": 8759.7,
"close": 8648.72,
"last": 8648.72,
"previousClose": 8759.67,
"change": -110.98,
"percentage": -1.267,
"average": None,
"baseVolume": 35025.943355,
"quoteVolume": 304135046.4242901,
"info": {},
},
"ETH/USDT": {
"symbol": "ETH/USDT",
"timestamp": 1522014804118,
"datetime": "2018-03-25T21:53:24.118Z",
"high": 530.88,
"low": 512.0,
"bid": 529.73,
"bidVolume": 0.2,
"ask": 530.21,
"askVolume": 0.2464,
"vwap": 521.02438405,
"open": 527.27,
"close": 528.42,
"first": None,
"last": 530.21,
"change": 0.558,
"percentage": 2.349,
"average": None,
"baseVolume": 72300.0659,
"quoteVolume": 37670097.3022171,
"info": {},
},
"TKN/USDT": {
"symbol": "TKN/USDT",
"timestamp": 1522014806198,
"datetime": "2018-03-25T21:53:26.198Z",
"high": 8718.0,
"low": 8365.77,
"bid": 8603.64,
"bidVolume": 0.15846,
"ask": 8603.67,
"askVolume": 0.069147,
"vwap": 8536.35621697,
"open": 8680.0,
"close": 8680.0,
"first": None,
"last": 8603.67,
"change": -0.879,
"percentage": None,
"average": None,
"baseVolume": 30414.604298,
"quoteVolume": 259629896.48584127,
"info": {},
},
"BLK/USDT": {
"symbol": "BLK/USDT",
"timestamp": 1522014806145,
"datetime": "2018-03-25T21:53:26.145Z",
"high": 66.95,
"low": 63.38,
"bid": 66.473,
"bidVolume": 4.968,
"ask": 66.54,
"askVolume": 2.704,
"vwap": 65.0526901,
"open": 66.43,
"close": 66.383,
"first": None,
"last": 66.5,
"change": 0.105,
"percentage": None,
"average": None,
"baseVolume": 294106.204,
"quoteVolume": 19132399.743954,
"info": {},
},
"LTC/USDT": {
"symbol": "LTC/USDT",
"timestamp": 1523787257812,
"datetime": "2018-04-15T10:14:18.812Z",
"high": 129.94,
"low": 124.0,
"bid": 129.28,
"bidVolume": 0.03201,
"ask": 129.52,
"askVolume": 0.14529,
"vwap": 126.92838682,
"open": 127.0,
"close": 127.1,
"first": None,
"last": 129.28,
"change": 1.795,
"percentage": None,
"average": None,
"baseVolume": 59698.79897,
"quoteVolume": 29132399.743954,
"info": {},
},
"XRP/BTC": {
"symbol": "XRP/BTC",
"timestamp": 1573758257534,
"datetime": "2019-11-14T19:04:17.534Z",
"high": 3.126e-05,
"low": 3.061e-05,
"bid": 3.093e-05,
"bidVolume": 27901.0,
"ask": 3.095e-05,
"askVolume": 10551.0,
"vwap": 3.091e-05,
"open": 3.119e-05,
"close": 3.094e-05,
"last": 3.094e-05,
"previousClose": 3.117e-05,
"change": -2.5e-07,
"percentage": -0.802,
"average": None,
"baseVolume": 37334921.0,
"quoteVolume": 1154.19266394,
"info": {},
},
"NANO/USDT": {
"symbol": "NANO/USDT",
"timestamp": 1580469388244,
"datetime": "2020-01-31T11:16:28.244Z",
"high": 0.7519,
"low": 0.7154,
"bid": 0.7305,
"bidVolume": 300.3,
"ask": 0.7342,
"askVolume": 15.14,
"vwap": 0.73645591,
"open": 0.7154,
"close": 0.7342,
"last": 0.7342,
"previousClose": 0.7189,
"change": 0.0188,
"percentage": 2.628,
"average": None,
"baseVolume": 439472.44,
"quoteVolume": 323652.075405,
"info": {},
},
# Example of leveraged pair with incomplete info
"ADAHALF/USDT": {
"symbol": "ADAHALF/USDT",
"timestamp": 1580469388244,
"datetime": "2020-01-31T11:16:28.244Z",
"high": None,
"low": None,
"bid": 0.7305,
"bidVolume": None,
"ask": 0.7342,
"askVolume": None,
"vwap": None,
"open": None,
"close": None,
"last": None,
"previousClose": None,
"change": None,
"percentage": 2.628,
"average": None,
"baseVolume": 0.0,
"quoteVolume": 0.0,
"info": {},
},
"ADADOUBLE/USDT": {
"symbol": "ADADOUBLE/USDT",
"timestamp": 1580469388244,
"datetime": "2020-01-31T11:16:28.244Z",
"high": None,
"low": None,
"bid": 0.7305,
"bidVolume": None,
"ask": 0.7342,
"askVolume": None,
"vwap": None,
"open": None,
"close": None,
"last": 0,
"previousClose": None,
"change": None,
"percentage": 2.628,
"average": None,
"baseVolume": 0.0,
"quoteVolume": 0.0,
"info": {},
},
}
)
@pytest.fixture
def dataframe_1m(testdatadir):
with (testdatadir / "UNITTEST_BTC-1m.json").open("r") as data_file:
return ohlcv_to_dataframe(
json.load(data_file), "1m", pair="UNITTEST/BTC", fill_missing=True
)
@pytest.fixture(scope="function")
def trades_for_order():
return [
{
"info": {
"id": 34567,
"orderId": 123456,
"price": "2.0",
"qty": "8.00000000",
"commission": "0.00800000",
"commissionAsset": "LTC",
"time": 1521663363189,
"isBuyer": True,
"isMaker": False,
"isBestMatch": True,
},
"timestamp": 1521663363189,
"datetime": "2018-03-21T20:16:03.189Z",
"symbol": "LTC/USDT",
"id": "34567",
"order": "123456",
"type": None,
"side": "buy",
"price": 2.0,
"cost": 16.0,
"amount": 8.0,
"fee": {"cost": 0.008, "currency": "LTC"},
}
]
@pytest.fixture(scope="function")
def trades_history():
return [
[1565798389463, "12618132aa9", None, "buy", 0.019627, 0.04, 0.00078508],
[1565798399629, "1261813bb30", None, "buy", 0.019627, 0.244, 0.004788987999999999],
[1565798399752, "1261813cc31", None, "sell", 0.019626, 0.011, 0.00021588599999999999],
[1565798399862, "126181cc332", None, "sell", 0.019626, 0.011, 0.00021588599999999999],
[1565798399862, "126181cc333", None, "sell", 0.019626, 0.012, 0.00021588599999999999],
[1565798399872, "1261aa81334", None, "sell", 0.019626, 0.011, 0.00021588599999999999],
]
@pytest.fixture(scope="function")
def trades_history_df(trades_history):
trades = trades_list_to_df(trades_history)
trades["date"] = pd.to_datetime(trades["timestamp"], unit="ms", utc=True)
return trades
@pytest.fixture(scope="function")
def fetch_trades_result():
return [
{
"info": ["0.01962700", "0.04000000", "1565798399.4631551", "b", "m", "", "126181329"],
"timestamp": 1565798399463,
"datetime": "2019-08-14T15:59:59.463Z",
"symbol": "ETH/BTC",
"id": "126181329",
"order": None,
"type": None,
"takerOrMaker": None,
"side": "buy",
"price": 0.019627,
"amount": 0.04,
"cost": 0.00078508,
"fee": None,
},
{
"info": ["0.01962700", "0.24400000", "1565798399.6291551", "b", "m", "", "126181330"],
"timestamp": 1565798399629,
"datetime": "2019-08-14T15:59:59.629Z",
"symbol": "ETH/BTC",
"id": "126181330",
"order": None,
"type": None,
"takerOrMaker": None,
"side": "buy",
"price": 0.019627,
"amount": 0.244,
"cost": 0.004788987999999999,
"fee": None,
},
{
"info": ["0.01962600", "0.01100000", "1565798399.7521551", "s", "m", "", "126181331"],
"timestamp": 1565798399752,
"datetime": "2019-08-14T15:59:59.752Z",
"symbol": "ETH/BTC",
"id": "126181331",
"order": None,
"type": None,
"takerOrMaker": None,
"side": "sell",
"price": 0.019626,
"amount": 0.011,
"cost": 0.00021588599999999999,
"fee": None,
},
{
"info": ["0.01962600", "0.01100000", "1565798399.8621551", "s", "m", "", "126181332"],
"timestamp": 1565798399862,
"datetime": "2019-08-14T15:59:59.862Z",
"symbol": "ETH/BTC",
"id": "126181332",
"order": None,
"type": None,
"takerOrMaker": None,
"side": "sell",
"price": 0.019626,
"amount": 0.011,
"cost": 0.00021588599999999999,
"fee": None,
},
{
"info": [
"0.01952600",
"0.01200000",
"1565798399.8721551",
"s",
"m",
"",
"126181333",
1565798399872512133,
],
"timestamp": 1565798399872,
"datetime": "2019-08-14T15:59:59.872Z",
"symbol": "ETH/BTC",
"id": "126181333",
"order": None,
"type": None,
"takerOrMaker": None,
"side": "sell",
"price": 0.019626,
"amount": 0.011,
"cost": 0.00021588599999999999,
"fee": None,
},
]
@pytest.fixture(scope="function")
def trades_for_order2():
return [
{
"info": {},
"timestamp": 1521663363189,
"datetime": "2018-03-21T20:16:03.189Z",
"symbol": "LTC/ETH",
"id": "34567",
"order": "123456",
"type": None,
"side": "buy",
"price": 0.245441,
"cost": 1.963528,
"amount": 4.0,
"fee": {"cost": 0.004, "currency": "LTC"},
},
{
"info": {},
"timestamp": 1521663363189,
"datetime": "2018-03-21T20:16:03.189Z",
"symbol": "LTC/ETH",
"id": "34567",
"order": "123456",
"type": None,
"side": "buy",
"price": 0.245441,
"cost": 1.963528,
"amount": 4.0,
"fee": {"cost": 0.004, "currency": "LTC"},
},
]
@pytest.fixture
def buy_order_fee():
return {
"id": "mocked_limit_buy_old",
"type": "limit",
"side": "buy",
"symbol": "mocked",
"timestamp": dt_ts(dt_now() - timedelta(minutes=601)),
"datetime": (dt_now() - timedelta(minutes=601)).isoformat(),
"price": 0.245441,
"amount": 8.0,
"cost": 1.963528,
"remaining": 90.99181073,
"status": "closed",
"fee": None,
}
@pytest.fixture(scope="function")
def edge_conf(default_conf):
conf = deepcopy(default_conf)
conf["runmode"] = RunMode.DRY_RUN
conf["max_open_trades"] = -1
conf["tradable_balance_ratio"] = 0.5
conf["stake_amount"] = constants.UNLIMITED_STAKE_AMOUNT
conf["edge"] = {
"enabled": True,
"process_throttle_secs": 1800,
"calculate_since_number_of_days": 14,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
"stoploss_range_step": -0.01,
"maximum_winrate": 0.80,
"minimum_expectancy": 0.20,
"min_trade_number": 15,
"max_trade_duration_minute": 1440,
"remove_pumps": False,
}
return conf
@pytest.fixture
def rpc_balance():
return {
"BTC": {"total": 12.0, "free": 12.0, "used": 0.0},
"ETH": {"total": 0.0, "free": 0.0, "used": 0.0},
"USDT": {"total": 10000.0, "free": 10000.0, "used": 0.0},
"LTC": {"total": 10.0, "free": 10.0, "used": 0.0},
"XRP": {"total": 0.1, "free": 0.01, "used": 0.0},
"EUR": {"total": 10.0, "free": 10.0, "used": 0.0},
}
@pytest.fixture
def testdatadir() -> Path:
"""Return the path where testdata files are stored"""
return (Path(__file__).parent / "testdata").resolve()
@pytest.fixture(scope="function")
def import_fails() -> None:
# Source of this test-method:
# https://stackoverflow.com/questions/2481511/mocking-importerror-in-python
import builtins
realimport = builtins.__import__
def mockedimport(name, *args, **kwargs):
if name in ["filelock", "cysystemd.journal", "uvloop"]:
raise ImportError(f"No module named '{name}'")
return realimport(name, *args, **kwargs)
builtins.__import__ = mockedimport
# Run test - then cleanup
yield
# restore previous importfunction
builtins.__import__ = realimport
@pytest.fixture(scope="function")
def open_trade():
trade = Trade(
pair="ETH/BTC",
open_rate=0.00001099,
exchange="binance",
amount=90.99181073,
fee_open=0.0,
fee_close=0.0,
stake_amount=1,
open_date=dt_now() - timedelta(minutes=601),
is_open=True,
)
trade.orders = [
Order(
ft_order_side="buy",
ft_pair=trade.pair,
ft_is_open=True,
ft_amount=trade.amount,
ft_price=trade.open_rate,
order_id="123456789",
status="closed",
symbol=trade.pair,
order_type="market",
side="buy",
price=trade.open_rate,
average=trade.open_rate,
filled=trade.amount,
remaining=0,
cost=trade.open_rate * trade.amount,
order_date=trade.open_date,
order_filled_date=trade.open_date,
)
]
return trade
@pytest.fixture(scope="function")
def open_trade_usdt():
trade = Trade(
pair="ADA/USDT",
open_rate=2.0,
exchange="binance",
amount=30.0,
fee_open=0.0,
fee_close=0.0,
stake_amount=60.0,
open_date=dt_now() - timedelta(minutes=601),
is_open=True,
)
trade.orders = [
Order(
ft_order_side="buy",
ft_pair=trade.pair,
ft_is_open=False,
ft_amount=trade.amount,
ft_price=trade.open_rate,
order_id="123456789",
status="closed",
symbol=trade.pair,
order_type="market",
side="buy",
price=trade.open_rate,
average=trade.open_rate,
filled=trade.amount,
remaining=0,
cost=trade.open_rate * trade.amount,
order_date=trade.open_date,
order_filled_date=trade.open_date,
),
Order(
ft_order_side="exit",
ft_pair=trade.pair,
ft_is_open=True,
ft_amount=trade.amount,
ft_price=trade.open_rate,
order_id="123456789_exit",
status="open",
symbol=trade.pair,
order_type="limit",
side="sell",
price=trade.open_rate,
average=trade.open_rate,
filled=trade.amount,
remaining=0,
cost=trade.open_rate * trade.amount,
order_date=trade.open_date,
order_filled_date=trade.open_date,
),
]
return trade
@pytest.fixture(scope="function")
def limit_buy_order_usdt_open():
return {
"id": "mocked_limit_buy_usdt",
"type": "limit",
"side": "buy",
"symbol": "mocked",
"datetime": dt_now().isoformat(),
"timestamp": dt_ts(),
"price": 2.00,
"average": 2.00,
"amount": 30.0,
"filled": 0.0,
"cost": 60.0,
"remaining": 30.0,
"status": "open",
}
@pytest.fixture(scope="function")
def limit_buy_order_usdt(limit_buy_order_usdt_open):
order = deepcopy(limit_buy_order_usdt_open)
order["status"] = "closed"
order["filled"] = order["amount"]
order["remaining"] = 0.0
return order
@pytest.fixture
def limit_sell_order_usdt_open():
return {
"id": "mocked_limit_sell_usdt",
"type": "limit",
"side": "sell",
"symbol": "mocked",
"datetime": dt_now().isoformat(),
"timestamp": dt_ts(),
"price": 2.20,
"amount": 30.0,
"cost": 66.0,
"filled": 0.0,
"remaining": 30.0,
"status": "open",
}
@pytest.fixture
def limit_sell_order_usdt(limit_sell_order_usdt_open):
order = deepcopy(limit_sell_order_usdt_open)
order["remaining"] = 0.0
order["filled"] = order["amount"]
order["status"] = "closed"
return order
@pytest.fixture(scope="function")
def market_buy_order_usdt():
return {
"id": "mocked_market_buy",
"type": "market",
"side": "buy",
"symbol": "mocked",
"timestamp": dt_ts(),
"datetime": dt_now().isoformat(),
"price": 2.00,
"amount": 30.0,
"filled": 30.0,
"remaining": 0.0,
"status": "closed",
}
@pytest.fixture
def market_buy_order_usdt_doublefee(market_buy_order_usdt):
order = deepcopy(market_buy_order_usdt)
order["fee"] = None
# Market orders filled with 2 trades can have fees in different currencies
# assuming the account runs out of BNB.
order["fees"] = [
{"cost": 0.00025125, "currency": "BNB"},
{"cost": 0.05030681, "currency": "USDT"},
]
order["trades"] = [
{
"timestamp": None,
"datetime": None,
"symbol": "ETH/USDT",
"id": None,
"order": "123",
"type": "market",
"side": "sell",
"takerOrMaker": None,
"price": 2.01,
"amount": 25.0,
"cost": 50.25,
"fee": {"cost": 0.00025125, "currency": "BNB"},
},
{
"timestamp": None,
"datetime": None,
"symbol": "ETH/USDT",
"id": None,
"order": "123",
"type": "market",
"side": "sell",
"takerOrMaker": None,
"price": 2.0,
"amount": 5,
"cost": 10,
"fee": {"cost": 0.0100306, "currency": "USDT"},
},
]
return order
@pytest.fixture
def market_sell_order_usdt():
return {
"id": "mocked_limit_sell",
"type": "market",
"side": "sell",
"symbol": "mocked",
"timestamp": dt_ts(),
"datetime": dt_now().isoformat(),
"price": 2.20,
"amount": 30.0,
"filled": 30.0,
"remaining": 0.0,
"status": "closed",
}
@pytest.fixture(scope="function")
def limit_order(limit_buy_order_usdt, limit_sell_order_usdt):
return {"buy": limit_buy_order_usdt, "sell": limit_sell_order_usdt}
@pytest.fixture(scope="function")
def limit_order_open(limit_buy_order_usdt_open, limit_sell_order_usdt_open):
return {"buy": limit_buy_order_usdt_open, "sell": limit_sell_order_usdt_open}
@pytest.fixture(scope="function")
def mark_ohlcv():
return [
[1630454400000, 2.77, 2.77, 2.73, 2.73, 0],
[1630458000000, 2.73, 2.76, 2.72, 2.74, 0],
[1630461600000, 2.74, 2.76, 2.74, 2.76, 0],
[1630465200000, 2.76, 2.76, 2.74, 2.76, 0],
[1630468800000, 2.76, 2.77, 2.75, 2.77, 0],
[1630472400000, 2.77, 2.79, 2.75, 2.78, 0],
[1630476000000, 2.78, 2.80, 2.77, 2.77, 0],
[1630479600000, 2.78, 2.79, 2.77, 2.77, 0],
[1630483200000, 2.77, 2.79, 2.77, 2.78, 0],
[1630486800000, 2.77, 2.84, 2.77, 2.84, 0],
[1630490400000, 2.84, 2.85, 2.81, 2.81, 0],
[1630494000000, 2.81, 2.83, 2.81, 2.81, 0],
[1630497600000, 2.81, 2.84, 2.81, 2.82, 0],
[1630501200000, 2.82, 2.83, 2.81, 2.81, 0],
]
@pytest.fixture(scope="function")
def funding_rate_history_hourly():
return [
{
"symbol": "ADA/USDT:USDT",
"fundingRate": -0.000008,
"timestamp": 1630454400000,
"datetime": "2021-09-01T00:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": -0.000004,
"timestamp": 1630458000000,
"datetime": "2021-09-01T01:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": 0.000012,
"timestamp": 1630461600000,
"datetime": "2021-09-01T02:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": -0.000003,
"timestamp": 1630465200000,
"datetime": "2021-09-01T03:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": -0.000007,
"timestamp": 1630468800000,
"datetime": "2021-09-01T04:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": 0.000003,
"timestamp": 1630472400000,
"datetime": "2021-09-01T05:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": 0.000019,
"timestamp": 1630476000000,
"datetime": "2021-09-01T06:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": 0.000003,
"timestamp": 1630479600000,
"datetime": "2021-09-01T07:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": -0.000003,
"timestamp": 1630483200000,
"datetime": "2021-09-01T08:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": 0,
"timestamp": 1630486800000,
"datetime": "2021-09-01T09:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": 0.000013,
"timestamp": 1630490400000,
"datetime": "2021-09-01T10:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": 0.000077,
"timestamp": 1630494000000,
"datetime": "2021-09-01T11:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": 0.000072,
"timestamp": 1630497600000,
"datetime": "2021-09-01T12:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": 0.000097,
"timestamp": 1630501200000,
"datetime": "2021-09-01T13:00:00.000Z",
},
]
@pytest.fixture(scope="function")
def funding_rate_history_octohourly():
return [
{
"symbol": "ADA/USDT:USDT",
"fundingRate": -0.000008,
"timestamp": 1630454400000,
"datetime": "2021-09-01T00:00:00.000Z",
},
{
"symbol": "ADA/USDT:USDT",
"fundingRate": -0.000003,
"timestamp": 1630483200000,
"datetime": "2021-09-01T08:00:00.000Z",
},
]
@pytest.fixture(scope="function")
def leverage_tiers():
return {
"1000SHIB/USDT:USDT": [
{
"minNotional": 0,
"maxNotional": 50000,
"maintenanceMarginRate": 0.01,
"maxLeverage": 50,
"maintAmt": 0.0,
},
{
"minNotional": 50000,
"maxNotional": 150000,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20,
"maintAmt": 750.0,
},
{
"minNotional": 150000,
"maxNotional": 250000,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10,
"maintAmt": 4500.0,
},
{
"minNotional": 250000,
"maxNotional": 500000,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5,
"maintAmt": 17000.0,
},
{
"minNotional": 500000,
"maxNotional": 1000000,
"maintenanceMarginRate": 0.125,
"maxLeverage": 4,
"maintAmt": 29500.0,
},
{
"minNotional": 1000000,
"maxNotional": 2000000,
"maintenanceMarginRate": 0.25,
"maxLeverage": 2,
"maintAmt": 154500.0,
},
{
"minNotional": 2000000,
"maxNotional": 30000000,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1,
"maintAmt": 654500.0,
},
],
"1INCH/USDT:USDT": [
{
"minNotional": 0,
"maxNotional": 5000,
"maintenanceMarginRate": 0.012,
"maxLeverage": 50,
"maintAmt": 0.0,
},
{
"minNotional": 5000,
"maxNotional": 25000,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20,
"maintAmt": 65.0,
},
{
"minNotional": 25000,
"maxNotional": 100000,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10,
"maintAmt": 690.0,
},
{
"minNotional": 100000,
"maxNotional": 250000,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5,
"maintAmt": 5690.0,
},
{
"minNotional": 250000,
"maxNotional": 1000000,
"maintenanceMarginRate": 0.125,
"maxLeverage": 2,
"maintAmt": 11940.0,
},
{
"minNotional": 1000000,
"maxNotional": 100000000,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1,
"maintAmt": 386940.0,
},
],
"AAVE/USDT:USDT": [
{
"minNotional": 0,
"maxNotional": 5000,
"maintenanceMarginRate": 0.01,
"maxLeverage": 50,
"maintAmt": 0.0,
},
{
"minNotional": 5000,
"maxNotional": 25000,
"maintenanceMarginRate": 0.02,
"maxLeverage": 25,
"maintAmt": 75.0,
},
{
"minNotional": 25000,
"maxNotional": 100000,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10,
"maintAmt": 700.0,
},
{
"minNotional": 100000,
"maxNotional": 250000,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5,
"maintAmt": 5700.0,
},
{
"minNotional": 250000,
"maxNotional": 1000000,
"maintenanceMarginRate": 0.125,
"maxLeverage": 2,
"maintAmt": 11950.0,
},
{
"minNotional": 10000000,
"maxNotional": 50000000,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1,
"maintAmt": 386950.0,
},
],
"ADA/USDT:USDT": [
{
"minNotional": 0,
"maxNotional": 100000,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20,
"maintAmt": 0.0,
},
{
"minNotional": 100000,
"maxNotional": 500000,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10,
"maintAmt": 2500.0,
},
{
"minNotional": 500000,
"maxNotional": 1000000,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5,
"maintAmt": 27500.0,
},
{
"minNotional": 1000000,
"maxNotional": 2000000,
"maintenanceMarginRate": 0.15,
"maxLeverage": 3,
"maintAmt": 77500.0,
},
{
"minNotional": 2000000,
"maxNotional": 5000000,
"maintenanceMarginRate": 0.25,
"maxLeverage": 2,
"maintAmt": 277500.0,
},
{
"minNotional": 5000000,
"maxNotional": 30000000,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1,
"maintAmt": 1527500.0,
},
],
"XRP/USDT:USDT": [
{
"minNotional": 0, # stake(before leverage) = 0
"maxNotional": 100000, # max stake(before leverage) = 5000
"maintenanceMarginRate": 0.025,
"maxLeverage": 20,
"maintAmt": 0.0,
},
{
"minNotional": 100000, # stake = 10000.0
"maxNotional": 500000, # max_stake = 50000.0
"maintenanceMarginRate": 0.05,
"maxLeverage": 10,
"maintAmt": 2500.0,
},
{
"minNotional": 500000, # stake = 100000.0
"maxNotional": 1000000, # max_stake = 200000.0
"maintenanceMarginRate": 0.1,
"maxLeverage": 5,
"maintAmt": 27500.0,
},
{
"minNotional": 1000000, # stake = 333333.3333333333
"maxNotional": 2000000, # max_stake = 666666.6666666666
"maintenanceMarginRate": 0.15,
"maxLeverage": 3,
"maintAmt": 77500.0,
},
{
"minNotional": 2000000, # stake = 1000000.0
"maxNotional": 5000000, # max_stake = 2500000.0
"maintenanceMarginRate": 0.25,
"maxLeverage": 2,
"maintAmt": 277500.0,
},
{
"minNotional": 5000000, # stake = 5000000.0
"maxNotional": 30000000, # max_stake = 30000000.0
"maintenanceMarginRate": 0.5,
"maxLeverage": 1,
"maintAmt": 1527500.0,
},
],
"BNB/USDT:USDT": [
{
"minNotional": 0, # stake = 0.0
"maxNotional": 10000, # max_stake = 133.33333333333334
"maintenanceMarginRate": 0.0065,
"maxLeverage": 75,
"maintAmt": 0.0,
},
{
"minNotional": 10000, # stake = 200.0
"maxNotional": 50000, # max_stake = 1000.0
"maintenanceMarginRate": 0.01,
"maxLeverage": 50,
"maintAmt": 35.0,
},
{
"minNotional": 50000, # stake = 2000.0
"maxNotional": 250000, # max_stake = 10000.0
"maintenanceMarginRate": 0.02,
"maxLeverage": 25,
"maintAmt": 535.0,
},
{
"minNotional": 250000, # stake = 25000.0
"maxNotional": 1000000, # max_stake = 100000.0
"maintenanceMarginRate": 0.05,
"maxLeverage": 10,
"maintAmt": 8035.0,
},
{
"minNotional": 1000000, # stake = 200000.0
"maxNotional": 2000000, # max_stake = 400000.0
"maintenanceMarginRate": 0.1,
"maxLeverage": 5,
"maintAmt": 58035.0,
},
{
"minNotional": 2000000, # stake = 500000.0
"maxNotional": 5000000, # max_stake = 1250000.0
"maintenanceMarginRate": 0.125,
"maxLeverage": 4,
"maintAmt": 108035.0,
},
{
"minNotional": 5000000, # stake = 1666666.6666666667
"maxNotional": 10000000, # max_stake = 3333333.3333333335
"maintenanceMarginRate": 0.15,
"maxLeverage": 3,
"maintAmt": 233035.0,
},
{
"minNotional": 10000000, # stake = 5000000.0
"maxNotional": 20000000, # max_stake = 10000000.0
"maintenanceMarginRate": 0.25,
"maxLeverage": 2,
"maintAmt": 1233035.0,
},
{
"minNotional": 20000000, # stake = 20000000.0
"maxNotional": 50000000, # max_stake = 50000000.0
"maintenanceMarginRate": 0.5,
"maxLeverage": 1,
"maintAmt": 6233035.0,
},
],
"BTC/USDT:USDT": [
{
"minNotional": 0, # stake = 0.0
"maxNotional": 50000, # max_stake = 400.0
"maintenanceMarginRate": 0.004,
"maxLeverage": 125,
"maintAmt": 0.0,
},
{
"minNotional": 50000, # stake = 500.0
"maxNotional": 250000, # max_stake = 2500.0
"maintenanceMarginRate": 0.005,
"maxLeverage": 100,
"maintAmt": 50.0,
},
{
"minNotional": 250000, # stake = 5000.0
"maxNotional": 1000000, # max_stake = 20000.0
"maintenanceMarginRate": 0.01,
"maxLeverage": 50,
"maintAmt": 1300.0,
},
{
"minNotional": 1000000, # stake = 50000.0
"maxNotional": 7500000, # max_stake = 375000.0
"maintenanceMarginRate": 0.025,
"maxLeverage": 20,
"maintAmt": 16300.0,
},
{
"minNotional": 7500000, # stake = 750000.0
"maxNotional": 40000000, # max_stake = 4000000.0
"maintenanceMarginRate": 0.05,
"maxLeverage": 10,
"maintAmt": 203800.0,
},
{
"minNotional": 40000000, # stake = 8000000.0
"maxNotional": 100000000, # max_stake = 20000000.0
"maintenanceMarginRate": 0.1,
"maxLeverage": 5,
"maintAmt": 2203800.0,
},
{
"minNotional": 100000000, # stake = 25000000.0
"maxNotional": 200000000, # max_stake = 50000000.0
"maintenanceMarginRate": 0.125,
"maxLeverage": 4,
"maintAmt": 4703800.0,
},
{
"minNotional": 200000000, # stake = 66666666.666666664
"maxNotional": 400000000, # max_stake = 133333333.33333333
"maintenanceMarginRate": 0.15,
"maxLeverage": 3,
"maintAmt": 9703800.0,
},
{
"minNotional": 400000000, # stake = 200000000.0
"maxNotional": 600000000, # max_stake = 300000000.0
"maintenanceMarginRate": 0.25,
"maxLeverage": 2,
"maintAmt": 4.97038e7,
},
{
"minNotional": 600000000, # stake = 600000000.0
"maxNotional": 1000000000, # max_stake = 1000000000.0
"maintenanceMarginRate": 0.5,
"maxLeverage": 1,
"maintAmt": 1.997038e8,
},
],
"ZEC/USDT:USDT": [
{
"minNotional": 0,
"maxNotional": 50000,
"maintenanceMarginRate": 0.01,
"maxLeverage": 50,
"maintAmt": 0.0,
},
{
"minNotional": 50000,
"maxNotional": 150000,
"maintenanceMarginRate": 0.025,
"maxLeverage": 20,
"maintAmt": 750.0,
},
{
"minNotional": 150000,
"maxNotional": 250000,
"maintenanceMarginRate": 0.05,
"maxLeverage": 10,
"maintAmt": 4500.0,
},
{
"minNotional": 250000,
"maxNotional": 500000,
"maintenanceMarginRate": 0.1,
"maxLeverage": 5,
"maintAmt": 17000.0,
},
{
"minNotional": 500000,
"maxNotional": 1000000,
"maintenanceMarginRate": 0.125,
"maxLeverage": 4,
"maintAmt": 29500.0,
},
{
"minNotional": 1000000,
"maxNotional": 2000000,
"maintenanceMarginRate": 0.25,
"maxLeverage": 2,
"maintAmt": 154500.0,
},
{
"minNotional": 2000000,
"maxNotional": 30000000,
"maintenanceMarginRate": 0.5,
"maxLeverage": 1,
"maintAmt": 654500.0,
},
],
}