mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
86 lines
3.0 KiB
Python
86 lines
3.0 KiB
Python
import logging
|
|
from typing import Any, Dict
|
|
|
|
from pandas import DataFrame
|
|
from sb3_contrib.common.maskable.callbacks import MaskableEvalCallback
|
|
from sb3_contrib.common.maskable.utils import is_masking_supported
|
|
from stable_baselines3.common.vec_env import SubprocVecEnv, VecMonitor
|
|
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
|
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import make_env
|
|
from freqtrade.freqai.tensorboard.TensorboardCallback import TensorboardCallback
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ReinforcementLearner_multiproc(ReinforcementLearner):
|
|
"""
|
|
Demonstration of how to build vectorized environments
|
|
"""
|
|
|
|
def set_train_and_eval_environments(
|
|
self,
|
|
data_dictionary: Dict[str, Any],
|
|
prices_train: DataFrame,
|
|
prices_test: DataFrame,
|
|
dk: FreqaiDataKitchen,
|
|
):
|
|
"""
|
|
User can override this if they are using a custom MyRLEnv
|
|
:param data_dictionary: dict = common data dictionary containing train and test
|
|
features/labels/weights.
|
|
:param prices_train/test: DataFrame = dataframe comprised of the prices to be used in
|
|
the environment during training
|
|
or testing
|
|
:param dk: FreqaiDataKitchen = the datakitchen for the current pair
|
|
"""
|
|
train_df = data_dictionary["train_features"]
|
|
test_df = data_dictionary["test_features"]
|
|
|
|
if self.train_env:
|
|
self.train_env.close()
|
|
if self.eval_env:
|
|
self.eval_env.close()
|
|
|
|
env_info = self.pack_env_dict(dk.pair)
|
|
|
|
eval_freq = len(train_df) // self.max_threads
|
|
|
|
env_id = "train_env"
|
|
self.train_env = VecMonitor(
|
|
SubprocVecEnv(
|
|
[
|
|
make_env(self.MyRLEnv, env_id, i, 1, train_df, prices_train, env_info=env_info)
|
|
for i in range(self.max_threads)
|
|
]
|
|
)
|
|
)
|
|
|
|
eval_env_id = "eval_env"
|
|
self.eval_env = VecMonitor(
|
|
SubprocVecEnv(
|
|
[
|
|
make_env(
|
|
self.MyRLEnv, eval_env_id, i, 1, test_df, prices_test, env_info=env_info
|
|
)
|
|
for i in range(self.max_threads)
|
|
]
|
|
)
|
|
)
|
|
|
|
self.eval_callback = MaskableEvalCallback(
|
|
self.eval_env,
|
|
deterministic=True,
|
|
render=False,
|
|
eval_freq=eval_freq,
|
|
best_model_save_path=str(dk.data_path),
|
|
use_masking=(self.model_type == "MaskablePPO" and is_masking_supported(self.eval_env)),
|
|
)
|
|
|
|
# TENSORBOARD CALLBACK DOES NOT RECOMMENDED TO USE WITH MULTIPLE ENVS,
|
|
# IT WILL RETURN FALSE INFORMATION, NEVERTHELESS NOT THREAD SAFE WITH SB3!!!
|
|
actions = self.train_env.env_method("get_actions")[0]
|
|
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
|