freqtrade_origin/freqtrade/data/converter/orderflow.py

260 lines
11 KiB
Python

"""
Functions to convert orderflow data from public_trades
"""
import logging
import time
import numpy as np
import pandas as pd
from freqtrade.constants import DEFAULT_ORDERFLOW_COLUMNS, Config
from freqtrade.exceptions import DependencyException
from collections import OrderedDict
logger = logging.getLogger(__name__)
def _init_dataframe_with_trades_columns(dataframe: pd.DataFrame):
"""
Populates a dataframe with trades columns
:param dataframe: Dataframe to populate
"""
# Initialize columns with appropriate dtypes
dataframe["trades"] = np.nan
dataframe["orderflow"] = np.nan
dataframe["imbalances"] = np.nan
dataframe["stacked_imbalances_bid"] = np.nan
dataframe["stacked_imbalances_ask"] = np.nan
dataframe["max_delta"] = np.nan
dataframe["min_delta"] = np.nan
dataframe["bid"] = np.nan
dataframe["ask"] = np.nan
dataframe["delta"] = np.nan
dataframe["total_trades"] = np.nan
# Ensure the 'trades' column is of object type
dataframe["trades"] = dataframe["trades"].astype(object)
dataframe["orderflow"] = dataframe["orderflow"].astype(object)
dataframe["imbalances"] = dataframe["imbalances"].astype(object)
dataframe["stacked_imbalances_bid"] = dataframe["stacked_imbalances_bid"].astype(object)
dataframe["stacked_imbalances_ask"] = dataframe["stacked_imbalances_ask"].astype(object)
def _calculate_ohlcv_candle_start_and_end(df: pd.DataFrame, timeframe: str):
from freqtrade.exchange import timeframe_to_next_date, timeframe_to_resample_freq
timeframe_frequency = timeframe_to_resample_freq(timeframe)
# calculate ohlcv candle start and end
if df is not None and not df.empty:
df["datetime"] = pd.to_datetime(df["date"], unit="ms")
df["candle_start"] = df["datetime"].dt.floor(timeframe_frequency)
# used in _now_is_time_to_refresh_trades
df["candle_end"] = df["candle_start"].apply(
lambda candle_start: timeframe_to_next_date(timeframe, candle_start)
)
df.drop(columns=["datetime"], inplace=True)
# Global cache dictionary
cache_size = 1000 # TODO move that in config
cached_grouped_trades = OrderedDict() # TODO move that where?
def populate_dataframe_with_trades(config, dataframe, trades):
"""
Populates a dataframe with trades
:param dataframe: Dataframe to populate
:param trades: Trades to populate with
:return: Dataframe with trades populated
"""
config_orderflow = config["orderflow"]
timeframe = config["timeframe"]
# create columns for trades
_init_dataframe_with_trades_columns(dataframe)
try:
start_time = time.time()
# calculate ohlcv candle start and end
_calculate_ohlcv_candle_start_and_end(trades, timeframe)
# get date of earliest max_candles candle
max_candles = config_orderflow["max_candles"]
start_date = dataframe.tail(max_candles).date.iat[0]
# slice of trades that are before current ohlcv candles to make groupby faster
trades = trades.loc[trades.candle_start >= start_date]
trades.reset_index(inplace=True, drop=True)
# group trades by candle start
trades_grouped_by_candle_start = trades.groupby("candle_start")
# Create Series to hold complex data
trades_series = pd.Series(index=dataframe.index, dtype=object)
orderflow_series = pd.Series(index=dataframe.index, dtype=object)
imbalances_series = pd.Series(index=dataframe.index, dtype=object)
stacked_imbalances_bid_series = pd.Series(index=dataframe.index, dtype=object)
stacked_imbalances_ask_series = pd.Series(index=dataframe.index, dtype=object)
for candle_start, trades_grouped_df in trades_grouped_by_candle_start:
is_between = candle_start == dataframe["date"]
if is_between.any():
from freqtrade.exchange import timeframe_to_next_date
candle_next = timeframe_to_next_date(timeframe, candle_start)
if candle_next not in trades_grouped_by_candle_start.groups:
logger.warning(
f"candle at {candle_start} with {len(trades_grouped_df)} trades "
f"might be unfinished, because no finished trades at {candle_next}"
)
# Use caching mechanism
if (candle_start, candle_next) in cached_grouped_trades:
cache_entry = cached_grouped_trades[(candle_start, candle_next)]
dataframe.loc[is_between] = cache_entry
continue
# Store trades in Series using integer indices
indices = dataframe.index[is_between].tolist()
trades_series.loc[indices] = [trades_grouped_df] * len(indices)
# Calculate orderflow for each candle
orderflow = trades_to_volumeprofile_with_total_delta_bid_ask(
trades_grouped_df, scale=config_orderflow["scale"]
)
orderflow_series.loc[indices] = [orderflow] * len(indices)
# Calculate imbalances for each candle's orderflow
imbalances = trades_orderflow_to_imbalances(
orderflow,
imbalance_ratio=config_orderflow["imbalance_ratio"],
imbalance_volume=config_orderflow["imbalance_volume"],
)
imbalances_series.loc[indices] = [imbalances] * len(indices)
stacked_imb = config_orderflow["stacked_imbalance_range"]
stacked_imbalances_bid_series.loc[indices] = [stacked_imbalance_bid(imbalances, stacked_imbalance_range=stacked_imb)] * len(indices)
stacked_imbalances_ask_series.loc[indices] = [stacked_imbalance_ask(imbalances, stacked_imbalance_range=stacked_imb)] * len(indices)
bid = trades_grouped_df["side"].str.contains("sell").astype(int) * trades_grouped_df["amount"]
ask = trades_grouped_df["side"].str.contains("buy").astype(int) * trades_grouped_df["amount"]
deltas_per_trade = ask - bid
min_delta = deltas_per_trade.cumsum().min()
max_delta = deltas_per_trade.cumsum().max()
dataframe.loc[indices, "max_delta"] = max_delta
dataframe.loc[indices, "min_delta"] = min_delta
dataframe.loc[indices, "bid"] = bid.sum()
dataframe.loc[indices, "ask"] = ask.sum()
dataframe.loc[indices, "delta"] = dataframe.loc[indices, "ask"] - dataframe.loc[indices, "bid"]
dataframe.loc[indices, "total_trades"] = len(trades_grouped_df)
# Cache the result
cached_grouped_trades[(candle_start, candle_next)] = dataframe.loc[is_between].copy()
# Maintain cache size
if len(cached_grouped_trades) > cache_size:
cached_grouped_trades.popitem(last=False)
else:
logger.debug(f"Found NO candles for trades starting with {candle_start}")
logger.debug(f"trades.groups_keys in {time.time() - start_time} seconds")
# Merge the complex data Series back into the DataFrame
dataframe["trades"] = trades_series
dataframe["orderflow"] = orderflow_series
dataframe["imbalances"] = imbalances_series
dataframe["stacked_imbalances_bid"] = stacked_imbalances_bid_series
dataframe["stacked_imbalances_ask"] = stacked_imbalances_ask_series
except Exception as e:
logger.exception("Error populating dataframe with trades")
raise DependencyException(e)
return dataframe
def trades_to_volumeprofile_with_total_delta_bid_ask(trades: pd.DataFrame, scale: float):
"""
:param trades: dataframe
:param scale: scale aka bin size e.g. 0.5
:return: trades binned to levels according to scale aka orderflow
"""
df = pd.DataFrame([], columns=DEFAULT_ORDERFLOW_COLUMNS)
# create bid, ask where side is sell or buy
df["bid_amount"] = np.where(trades["side"].str.contains("sell"), trades["amount"], 0)
df["ask_amount"] = np.where(trades["side"].str.contains("buy"), trades["amount"], 0)
df["bid"] = np.where(trades["side"].str.contains("sell"), 1, 0)
df["ask"] = np.where(trades["side"].str.contains("buy"), 1, 0)
# round the prices to the nearest multiple of the scale
df["price"] = ((trades["price"] / scale).round() * scale).astype("float64").values
if df.empty:
df["total"] = np.nan
df["delta"] = np.nan
return df
df["delta"] = df["ask_amount"] - df["bid_amount"]
df["total_volume"] = df["ask_amount"] + df["bid_amount"]
df["total_trades"] = df["ask"] + df["bid"]
# group to bins aka apply scale
df = df.groupby("price").sum(numeric_only=True)
return df
def trades_orderflow_to_imbalances(df: pd.DataFrame, imbalance_ratio: int, imbalance_volume: int):
"""
:param df: dataframes with bid and ask
:param imbalance_ratio: imbalance_ratio e.g. 3
:param imbalance_volume: imbalance volume e.g. 10
:return: dataframe with bid and ask imbalance
"""
bid = df.bid
# compares bid and ask diagonally
ask = df.ask.shift(-1)
bid_imbalance = (bid / ask) > (imbalance_ratio)
# overwrite bid_imbalance with False if volume is not big enough
bid_imbalance_filtered = np.where(df.total_volume < imbalance_volume, False, bid_imbalance)
ask_imbalance = (ask / bid) > (imbalance_ratio)
# overwrite ask_imbalance with False if volume is not big enough
ask_imbalance_filtered = np.where(df.total_volume < imbalance_volume, False, ask_imbalance)
dataframe = pd.DataFrame(
{"bid_imbalance": bid_imbalance_filtered, "ask_imbalance": ask_imbalance_filtered},
index=df.index,
)
return dataframe
def stacked_imbalance(
df: pd.DataFrame, label: str, stacked_imbalance_range: int, should_reverse: bool
):
"""
y * (y.groupby((y != y.shift()).cumsum()).cumcount() + 1)
https://stackoverflow.com/questions/27626542/counting-consecutive-positive-values-in-python-pandas-array
"""
imbalance = df[f"{label}_imbalance"]
int_series = pd.Series(np.where(imbalance, 1, 0))
stacked = int_series * (
int_series.groupby((int_series != int_series.shift()).cumsum()).cumcount() + 1
)
max_stacked_imbalance_idx = stacked.index[stacked >= stacked_imbalance_range]
stacked_imbalance_price = np.nan
if not max_stacked_imbalance_idx.empty:
idx = (
max_stacked_imbalance_idx[0]
if not should_reverse
else np.flipud(max_stacked_imbalance_idx)[0]
)
stacked_imbalance_price = imbalance.index[idx]
return stacked_imbalance_price
def stacked_imbalance_ask(df: pd.DataFrame, stacked_imbalance_range: int):
return stacked_imbalance(df, "ask", stacked_imbalance_range, should_reverse=True)
def stacked_imbalance_bid(df: pd.DataFrame, stacked_imbalance_range: int):
return stacked_imbalance(df, "bid", stacked_imbalance_range, should_reverse=False)