freqtrade_origin/tests/freqai/conftest.py
2023-12-06 19:26:09 +01:00

263 lines
9.1 KiB
Python

import platform
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict
from unittest.mock import MagicMock
import pytest
from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider
from freqtrade.freqai.data_drawer import FreqaiDataDrawer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.resolvers import StrategyResolver
from freqtrade.resolvers.freqaimodel_resolver import FreqaiModelResolver
from tests.conftest import get_patched_exchange
def is_mac() -> bool:
machine = platform.system()
return "Darwin" in machine
@pytest.fixture(autouse=True)
def patch_torch_initlogs(mocker) -> None:
mocker.patch("torch._logging._init_logs")
@pytest.fixture(scope="function")
def freqai_conf(default_conf, tmp_path):
freqaiconf = deepcopy(default_conf)
freqaiconf.update(
{
"datadir": Path(default_conf["datadir"]),
"strategy": "freqai_test_strat",
"user_data_dir": tmp_path,
"strategy-path": "freqtrade/tests/strategy/strats",
"freqaimodel": "LightGBMRegressor",
"freqaimodel_path": "freqai/prediction_models",
"timerange": "20180110-20180115",
"freqai": {
"enabled": True,
"purge_old_models": 2,
"train_period_days": 2,
"backtest_period_days": 10,
"live_retrain_hours": 0,
"expiration_hours": 1,
"identifier": "uniqe-id100",
"live_trained_timestamp": 0,
"data_kitchen_thread_count": 2,
"activate_tensorboard": False,
"feature_parameters": {
"include_timeframes": ["5m"],
"include_corr_pairlist": ["ADA/BTC"],
"label_period_candles": 20,
"include_shifted_candles": 1,
"DI_threshold": 0.9,
"weight_factor": 0.9,
"principal_component_analysis": False,
"use_SVM_to_remove_outliers": True,
"stratify_training_data": 0,
"indicator_periods_candles": [10],
"shuffle_after_split": False,
"buffer_train_data_candles": 0
},
"data_split_parameters": {"test_size": 0.33, "shuffle": False},
"model_training_parameters": {"n_estimators": 100},
},
"config_files": [Path('config_examples', 'config_freqai.example.json')]
}
)
freqaiconf['exchange'].update({'pair_whitelist': ['ADA/BTC', 'DASH/BTC', 'ETH/BTC', 'LTC/BTC']})
return freqaiconf
def make_rl_config(conf):
conf.update({"strategy": "freqai_rl_test_strat"})
conf["freqai"].update({"model_training_parameters": {
"learning_rate": 0.00025,
"gamma": 0.9,
"verbose": 1
}})
conf["freqai"]["rl_config"] = {
"train_cycles": 1,
"thread_count": 2,
"max_trade_duration_candles": 300,
"model_type": "PPO",
"policy_type": "MlpPolicy",
"max_training_drawdown_pct": 0.5,
"net_arch": [32, 32],
"model_reward_parameters": {
"rr": 1,
"profit_aim": 0.02,
"win_reward_factor": 2
},
"drop_ohlc_from_features": False
}
return conf
def mock_pytorch_mlp_model_training_parameters() -> Dict[str, Any]:
return {
"learning_rate": 3e-4,
"trainer_kwargs": {
"n_steps": None,
"batch_size": 64,
"n_epochs": 1,
},
"model_kwargs": {
"hidden_dim": 32,
"dropout_percent": 0.2,
"n_layer": 1,
}
}
def get_patched_data_kitchen(mocker, freqaiconf):
dk = FreqaiDataKitchen(freqaiconf)
return dk
def get_patched_data_drawer(mocker, freqaiconf):
# dd = mocker.patch('freqtrade.freqai.data_drawer', MagicMock())
dd = FreqaiDataDrawer(freqaiconf)
return dd
def get_patched_freqai_strategy(mocker, freqaiconf):
strategy = StrategyResolver.load_strategy(freqaiconf)
strategy.ft_bot_start()
return strategy
def get_patched_freqaimodel(mocker, freqaiconf):
freqaimodel = FreqaiModelResolver.load_freqaimodel(freqaiconf)
return freqaimodel
def make_unfiltered_dataframe(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
freqai.dk.live = True
freqai.dk.pair = "ADA/BTC"
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(data_load_timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
new_timerange = TimeRange.parse_timerange("20180120-20180130")
corr_dataframes, base_dataframes = freqai.dd.get_base_and_corr_dataframes(
data_load_timerange, freqai.dk.pair, freqai.dk
)
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, freqai.dk.pair
)
for i in range(5):
unfiltered_dataframe[f'constant_{i}'] = i
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)
return freqai, unfiltered_dataframe
def make_data_dictionary(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180110-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
freqai.dk.live = True
freqai.dk.pair = "ADA/BTC"
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(data_load_timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
new_timerange = TimeRange.parse_timerange("20180120-20180130")
corr_dataframes, base_dataframes = freqai.dd.get_base_and_corr_dataframes(
data_load_timerange, freqai.dk.pair, freqai.dk
)
unfiltered_dataframe = freqai.dk.use_strategy_to_populate_indicators(
strategy, corr_dataframes, base_dataframes, freqai.dk.pair
)
unfiltered_dataframe = freqai.dk.slice_dataframe(new_timerange, unfiltered_dataframe)
freqai.dk.find_features(unfiltered_dataframe)
features_filtered, labels_filtered = freqai.dk.filter_features(
unfiltered_dataframe,
freqai.dk.training_features_list,
freqai.dk.label_list,
training_filter=True,
)
data_dictionary = freqai.dk.make_train_test_datasets(features_filtered, labels_filtered)
data_dictionary = freqai.dk.normalize_data(data_dictionary)
return freqai
def get_freqai_live_analyzed_dataframe(mocker, freqaiconf):
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
exchange = get_patched_exchange(mocker, freqaiconf)
strategy.dp = DataProvider(freqaiconf, exchange)
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
timerange = TimeRange.parse_timerange("20180110-20180114")
freqai.dk.load_all_pair_histories(timerange)
strategy.analyze_pair('ADA/BTC', '5m')
return strategy.dp.get_analyzed_dataframe('ADA/BTC', '5m')
def get_freqai_analyzed_dataframe(mocker, freqaiconf):
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
exchange = get_patched_exchange(mocker, freqaiconf)
strategy.dp = DataProvider(freqaiconf, exchange)
strategy.freqai_info = freqaiconf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
timerange = TimeRange.parse_timerange("20180110-20180114")
freqai.dk.load_all_pair_histories(timerange)
sub_timerange = TimeRange.parse_timerange("20180111-20180114")
corr_df, base_df = freqai.dk.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC")
return freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, 'LTC/BTC')
def get_ready_to_train(mocker, freqaiconf):
strategy = get_patched_freqai_strategy(mocker, freqaiconf)
exchange = get_patched_exchange(mocker, freqaiconf)
strategy.dp = DataProvider(freqaiconf, exchange)
strategy.freqai_info = freqaiconf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqaiconf, freqai.dd)
timerange = TimeRange.parse_timerange("20180110-20180114")
freqai.dk.load_all_pair_histories(timerange)
sub_timerange = TimeRange.parse_timerange("20180111-20180114")
corr_df, base_df = freqai.dk.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC")
return corr_df, base_df, freqai, strategy