freqtrade_origin/scripts/plot_profit.py
2018-01-26 10:07:48 +01:00

154 lines
4.7 KiB
Python
Executable File

#!/usr/bin/env python3
import sys
import json
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
import freqtrade.optimize as optimize
import freqtrade.misc as misc
import freqtrade.exchange as exchange
from freqtrade.strategy.strategy import Strategy
def plot_parse_args(args):
parser = misc.common_args_parser('Graph profits')
# FIX: perhaps delete those backtesting options that are not feasible (shows up in -h)
misc.backtesting_options(parser)
misc.scripts_options(parser)
return parser.parse_args(args)
# data:: [ pair, profit-%, enter, exit, time, duration]
# data:: ['BTC_XMR', 0.00537847, '1511176800', '1511178000', 5057, 1]
# FIX: make use of the enter/exit dates to insert the
# profit more precisely into the pg array
def make_profit_array(data, px, filter_pairs=[]):
pg = np.zeros(px)
# Go through the trades
# and make an total profit
# array
for trade in data:
pair = trade[0]
if filter_pairs and pair not in filter_pairs:
continue
profit = trade[1]
tim = trade[4]
dur = trade[5]
ix = tim + dur - 1
if ix < px:
pg[ix] += profit
# rewrite the pg array to go from
# total profits at each timeframe
# to accumulated profits
pa = 0
for x in range(0, len(pg)):
p = pg[x] # Get current total percent
pa += p # Add to the accumulated percent
pg[x] = pa # write back to save memory
return pg
def plot_profit(args) -> None:
"""
Plots the total profit for all pairs.
Note, the profit calculation isn't realistic.
But should be somewhat proportional, and therefor useful
in helping out to find a good algorithm.
"""
# We need to use the same pairs, same tick_interval
# and same timeperiod as used in backtesting
# to match the tickerdata against the profits-results
filter_pairs = args.pair
config = misc.load_config(args.config)
config.update({'strategy': args.strategy})
# Init strategy
strategy = Strategy()
strategy.init(config)
pairs = config['exchange']['pair_whitelist']
if filter_pairs:
filter_pairs = filter_pairs.split(',')
pairs = list(set(pairs) & set(filter_pairs))
print('Filter, keep pairs %s' % pairs)
timerange = misc.parse_timerange(args.timerange)
tickers = optimize.load_data(args.datadir, pairs=pairs,
ticker_interval=strategy.ticker_interval,
refresh_pairs=False,
timerange=timerange)
dataframes = optimize.preprocess(tickers)
# NOTE: the dataframes are of unequal length,
# 'dates' is an merged date array of them all.
dates = misc.common_datearray(dataframes)
max_x = dates.size
# Make an average close price of all the pairs that was involved.
# this could be useful to gauge the overall market trend
# We are essentially saying:
# array <- sum dataframes[*]['close'] / num_items dataframes
# FIX: there should be some onliner numpy/panda for this
avgclose = np.zeros(max_x)
num = 0
for pair, pair_data in dataframes.items():
close = pair_data['close']
maxprice = max(close) # Normalize price to [0,1]
print('Pair %s has length %s' % (pair, len(close)))
for x in range(0, len(close)):
avgclose[x] += close[x] / maxprice
# avgclose += close
num += 1
avgclose /= num
# Load the profits results
# And make an profits-growth array
filename = 'backtest-result.json'
with open(filename) as file:
data = json.load(file)
pg = make_profit_array(data, max_x, filter_pairs)
#
# Plot the pairs average close prices, and total profit growth
#
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
fig.suptitle('total profit')
ax1.plot(dates, avgclose, label='avgclose')
ax2.plot(dates, pg, label='profit')
ax1.legend(loc='upper left')
ax2.legend(loc='upper left')
# FIX if we have one line pair in paris
# then skip the plotting of the third graph,
# or change what we plot
# In third graph, we plot each profit separately
for pair in pairs:
pg = make_profit_array(data, max_x, pair)
ax3.plot(dates, pg, label=pair)
ax3.legend(loc='upper left')
# black background to easier see multiple colors
ax3.set_facecolor('black')
xfmt = mdates.DateFormatter('%d-%m-%y %H:%M') # Dont let matplotlib autoformat date
ax3.xaxis.set_major_formatter(xfmt)
fig.subplots_adjust(hspace=0)
fig.autofmt_xdate() # Rotate the dates
plt.show()
if __name__ == '__main__':
args = plot_parse_args(sys.argv[1:])
plot_profit(args)