mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 18:23:55 +00:00
78 lines
3.5 KiB
Python
78 lines
3.5 KiB
Python
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
|
import logging
|
|
from unittest.mock import MagicMock
|
|
|
|
import pandas as pd
|
|
import pytest
|
|
from arrow import get as getdate
|
|
|
|
from freqtrade.optimize.backtesting import Backtesting
|
|
from freqtrade.tests.conftest import patch_exchange, log_has
|
|
|
|
|
|
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
|
|
data_profit = pd.DataFrame([[getdate('2018-07-08 18:00:00').datetime,
|
|
0.0009910, 0.001011, 0.00098618, 0.001000, 47027.0, 1, 0],
|
|
[getdate('2018-07-08 19:00:00').datetime,
|
|
0.001000, 0.001010, 0.0009900, 0.0009900, 87116.0, 0, 0],
|
|
[getdate('2018-07-08 20:00:00').datetime,
|
|
0.0009900, 0.001011, 0.00091618, 0.0009900, 58539.0, 0, 0],
|
|
[getdate('2018-07-08 21:00:00').datetime,
|
|
0.001000, 0.001011, 0.00098618, 0.001100, 37498.0, 0, 1],
|
|
[getdate('2018-07-08 22:00:00').datetime,
|
|
0.001000, 0.001011, 0.00098618, 0.0009900, 59792.0, 0, 0]],
|
|
columns=columns)
|
|
|
|
data_loss = pd.DataFrame([[getdate('2018-07-08 18:00:00').datetime,
|
|
0.0009910, 0.001011, 0.00098618, 0.001000, 47027.0, 1, 0],
|
|
[getdate('2018-07-08 19:00:00').datetime,
|
|
0.001000, 0.001010, 0.0009900, 0.001000, 87116.0, 0, 0],
|
|
[getdate('2018-07-08 20:00:00').datetime,
|
|
0.001000, 0.001011, 0.0010618, 0.00091618, 58539.0, 0, 0],
|
|
[getdate('2018-07-08 21:00:00').datetime,
|
|
0.001000, 0.001011, 0.00098618, 0.00091618, 37498.0, 0, 0],
|
|
[getdate('2018-07-08 22:00:00').datetime,
|
|
0.001000, 0.001011, 0.00098618, 0.00091618, 59792.0, 0, 0]],
|
|
columns=columns)
|
|
|
|
|
|
@pytest.mark.parametrize("data, stoploss, tradecount, profit_perc, sl", [
|
|
(data_profit, -0.01, 1, 0.10557, False), # should be stoploss - drops 8%
|
|
# (data_profit, -0.10, 1, 0.10557, True), # win
|
|
(data_loss, -0.05, 1, -0.08839, True), # Stoploss ...
|
|
])
|
|
def test_backtest_results(default_conf, fee, mocker, caplog,
|
|
data, stoploss, tradecount, profit_perc, sl) -> None:
|
|
"""
|
|
run functional tests
|
|
"""
|
|
default_conf["stoploss"] = stoploss
|
|
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
|
mocker.patch('freqtrade.analyze.Analyze.populate_sell_trend', MagicMock(return_value=data))
|
|
mocker.patch('freqtrade.analyze.Analyze.populate_buy_trend', MagicMock(return_value=data))
|
|
patch_exchange(mocker)
|
|
|
|
backtesting = Backtesting(default_conf)
|
|
caplog.set_level(logging.DEBUG)
|
|
|
|
pair = 'UNITTEST/BTC'
|
|
# Dummy data as we mock the analyze functions
|
|
data_processed = {pair: pd.DataFrame()}
|
|
results = backtesting.backtest(
|
|
{
|
|
'stake_amount': default_conf['stake_amount'],
|
|
'processed': data_processed,
|
|
'max_open_trades': 10,
|
|
'realistic': True
|
|
}
|
|
)
|
|
print(results.T)
|
|
|
|
assert len(results) == tradecount
|
|
assert round(results["profit_percent"].sum(), 5) == profit_perc
|
|
if sl:
|
|
assert log_has("Stop loss hit.", caplog.record_tuples)
|
|
else:
|
|
|
|
assert not log_has("Stop loss hit.", caplog.record_tuples)
|