freqtrade_origin/freqtrade/tests/optimize/test_backtest_detail.py
2019-05-25 16:53:35 +02:00

214 lines
8.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, C0330, unused-argument
import logging
from unittest.mock import MagicMock
import pytest
from pandas import DataFrame
from freqtrade.data.history import get_timeframe
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.strategy.interface import SellType
from freqtrade.tests.conftest import patch_exchange
from freqtrade.tests.optimize import (BTContainer, BTrade,
_build_backtest_dataframe,
_get_frame_time_from_offset,
tests_ticker_interval)
# Test 1 Minus 8% Close
# Test with Stop-loss at 1%
# TC1: Stop-Loss Triggered 1% loss
tc1 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4600, 4600, 6172, 0, 0], # exit with stoploss hit
[3, 4975, 5000, 4980, 4977, 6172, 0, 0],
[4, 4977, 4987, 4977, 4995, 6172, 0, 0],
[5, 4995, 4995, 4995, 4950, 6172, 0, 0]],
stop_loss=-0.01, roi=1, profit_perc=-0.01,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
)
# Test 2 Minus 4% Low, minus 1% close
# Test with Stop-Loss at 3%
# TC2: Stop-Loss Triggered 3% Loss
tc2 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4962, 4975, 6172, 0, 0],
[3, 4975, 5000, 4800, 4962, 6172, 0, 0], # exit with stoploss hit
[4, 4962, 4987, 4937, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.03, roi=1, profit_perc=-0.03,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=3)]
)
# Test 3 Candle drops 4%, Recovers 1%.
# Entry Criteria Met
# Candle drops 20%
# Test with Stop-Loss at 2%
# TC3: Trade-A: Stop-Loss Triggered 2% Loss
# Trade-B: Stop-Loss Triggered 2% Loss
tc3 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5012, 4800, 4975, 6172, 0, 0], # exit with stoploss hit
[3, 4975, 5000, 4950, 4962, 6172, 1, 0],
[4, 4975, 5000, 4950, 4962, 6172, 0, 0], # enter trade 2 (signal on last candle)
[5, 4962, 4987, 4000, 4000, 6172, 0, 0], # exit with stoploss hit
[6, 4950, 4975, 4975, 4950, 6172, 0, 0]],
stop_loss=-0.02, roi=1, profit_perc=-0.04,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2),
BTrade(sell_reason=SellType.STOP_LOSS, open_tick=4, close_tick=5)]
)
# Test 4 Minus 3% / recovery +15%
# Candle Data for test 3 Candle drops 3% Closed 15% up
# Test with Stop-loss at 2% ROI 6%
# TC4: Stop-Loss Triggered 2% Loss
tc4 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5750, 4850, 5750, 6172, 0, 0], # Exit with stoploss hit
[3, 4975, 5000, 4950, 4962, 6172, 0, 0],
[4, 4962, 4987, 4937, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.02, roi=0.06, profit_perc=-0.02,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
)
# Test 5 / Drops 0.5% Closes +20%
# Set stop-loss at 1% ROI 3%
# TC5: ROI triggers 3% Gain
tc5 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4980, 4987, 6172, 1, 0],
[1, 5000, 5025, 4980, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5025, 4975, 4987, 6172, 0, 0],
[3, 4975, 6000, 4975, 6000, 6172, 0, 0], # ROI
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.01, roi=0.03, profit_perc=0.03,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=3)]
)
# Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve
# Set stop-loss at 2% ROI at 5%
# TC6: Stop-Loss triggers 2% Loss
tc6 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
[2, 4987, 5300, 4850, 5050, 6172, 0, 0], # Exit with stoploss
[3, 4975, 5000, 4950, 4962, 6172, 0, 0],
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.02, roi=0.05, profit_perc=-0.02,
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
)
# Test 7 - 6% Positive / 1% Negative / Close 1% Positve
# Set stop-loss at 2% ROI at 3%
# TC7: ROI Triggers 3% Gain
tc7 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
[1, 5000, 5025, 4975, 4987, 6172, 0, 0],
[2, 4987, 5300, 4950, 5050, 6172, 0, 0],
[3, 4975, 5000, 4950, 4962, 6172, 0, 0],
[4, 4962, 4987, 4972, 4950, 6172, 0, 0],
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
stop_loss=-0.02, roi=0.03, profit_perc=0.03,
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=2)]
)
# Test 8 - trailing_stop should raise so candle 3 causes a stoploss.
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC8: Trailing stoploss - stoploss should be adjusted candle 2
tc8 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5000, 6172, 0, 0],
[2, 5000, 5250, 4750, 4850, 6172, 0, 0],
[3, 4850, 5050, 4650, 4750, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
stop_loss=-0.10, roi=0.10, profit_perc=-0.055, trailing_stop=True,
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)]
)
# Test 9 - trailing_stop should raise - high and low in same candle.
# Candle Data for test 9
# Set stop-loss at 10%, ROI at 10% (should not apply)
# TC9: Trailing stoploss - stoploss should be adjusted candle 2
tc9 = BTContainer(data=[
# D O H L C V B S
[0, 5000, 5050, 4950, 5000, 6172, 1, 0],
[1, 5000, 5050, 4950, 5000, 6172, 0, 0],
[2, 5000, 5050, 4950, 5000, 6172, 0, 0],
[3, 5000, 5200, 4550, 4850, 6172, 0, 0],
[4, 4750, 4950, 4350, 4750, 6172, 0, 0]],
stop_loss=-0.10, roi=0.10, profit_perc=-0.064, trailing_stop=True,
trades=[BTrade(sell_reason=SellType.TRAILING_STOP_LOSS, open_tick=1, close_tick=3)]
)
TESTS = [
tc1,
tc2,
tc3,
tc4,
tc5,
tc6,
tc7,
tc8,
tc9,
]
@pytest.mark.parametrize("data", TESTS)
def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
"""
run functional tests
"""
default_conf["stoploss"] = data.stop_loss
default_conf["minimal_roi"] = {"0": data.roi}
default_conf["ticker_interval"] = tests_ticker_interval
default_conf["trailing_stop"] = data.trailing_stop
mocker.patch("freqtrade.exchange.Exchange.get_fee", MagicMock(return_value=0.0))
patch_exchange(mocker)
frame = _build_backtest_dataframe(data.data)
backtesting = Backtesting(default_conf)
backtesting.advise_buy = lambda a, m: frame
backtesting.advise_sell = lambda a, m: frame
caplog.set_level(logging.DEBUG)
pair = "UNITTEST/BTC"
# Dummy data as we mock the analyze functions
data_processed = {pair: DataFrame()}
min_date, max_date = get_timeframe({pair: frame})
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 10,
'start_date': min_date,
'end_date': max_date,
}
)
print(results.T)
assert len(results) == len(data.trades)
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
for c, trade in enumerate(data.trades):
res = results.iloc[c]
assert res.sell_reason == trade.sell_reason
assert res.open_time == _get_frame_time_from_offset(trade.open_tick)
assert res.close_time == _get_frame_time_from_offset(trade.close_tick)