mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 20:23:57 +00:00
297 lines
12 KiB
Python
297 lines
12 KiB
Python
"""
|
|
Functions to convert orderflow data from public_trades
|
|
"""
|
|
|
|
import logging
|
|
import time
|
|
import typing
|
|
from collections import OrderedDict
|
|
from datetime import datetime
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
from freqtrade.constants import DEFAULT_ORDERFLOW_COLUMNS, Config
|
|
from freqtrade.enums import RunMode
|
|
from freqtrade.exceptions import DependencyException
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def _init_dataframe_with_trades_columns(dataframe: pd.DataFrame):
|
|
"""
|
|
Populates a dataframe with trades columns
|
|
:param dataframe: Dataframe to populate
|
|
"""
|
|
# Initialize columns with appropriate dtypes
|
|
dataframe["trades"] = np.nan
|
|
dataframe["orderflow"] = np.nan
|
|
dataframe["imbalances"] = np.nan
|
|
dataframe["stacked_imbalances_bid"] = np.nan
|
|
dataframe["stacked_imbalances_ask"] = np.nan
|
|
dataframe["max_delta"] = np.nan
|
|
dataframe["min_delta"] = np.nan
|
|
dataframe["bid"] = np.nan
|
|
dataframe["ask"] = np.nan
|
|
dataframe["delta"] = np.nan
|
|
dataframe["total_trades"] = np.nan
|
|
|
|
# Ensure the 'trades' column is of object type
|
|
dataframe["trades"] = dataframe["trades"].astype(object)
|
|
dataframe["orderflow"] = dataframe["orderflow"].astype(object)
|
|
dataframe["imbalances"] = dataframe["imbalances"].astype(object)
|
|
dataframe["stacked_imbalances_bid"] = dataframe["stacked_imbalances_bid"].astype(object)
|
|
dataframe["stacked_imbalances_ask"] = dataframe["stacked_imbalances_ask"].astype(object)
|
|
|
|
|
|
def _calculate_ohlcv_candle_start_and_end(df: pd.DataFrame, timeframe: str):
|
|
from freqtrade.exchange import timeframe_to_next_date, timeframe_to_resample_freq
|
|
|
|
timeframe_frequency = timeframe_to_resample_freq(timeframe)
|
|
# calculate ohlcv candle start and end
|
|
if df is not None and not df.empty:
|
|
df["datetime"] = pd.to_datetime(df["date"], unit="ms")
|
|
df["candle_start"] = df["datetime"].dt.floor(timeframe_frequency)
|
|
# used in _now_is_time_to_refresh_trades
|
|
df["candle_end"] = df["candle_start"].apply(
|
|
lambda candle_start: timeframe_to_next_date(timeframe, candle_start)
|
|
)
|
|
df.drop(columns=["datetime"], inplace=True)
|
|
|
|
|
|
def populate_dataframe_with_trades(
|
|
cached_grouped_trades: OrderedDict[tuple[datetime, datetime], pd.DataFrame],
|
|
config: Config,
|
|
dataframe: pd.DataFrame,
|
|
trades: pd.DataFrame,
|
|
) -> tuple[pd.DataFrame, OrderedDict[tuple[datetime, datetime], pd.DataFrame]]:
|
|
"""
|
|
Populates a dataframe with trades
|
|
:param dataframe: Dataframe to populate
|
|
:param trades: Trades to populate with
|
|
:return: Dataframe with trades populated
|
|
"""
|
|
timeframe = config["timeframe"]
|
|
config_orderflow = config["orderflow"]
|
|
|
|
# create columns for trades
|
|
_init_dataframe_with_trades_columns(dataframe)
|
|
if trades is None or trades.empty:
|
|
return dataframe, cached_grouped_trades
|
|
|
|
try:
|
|
start_time = time.time()
|
|
# calculate ohlcv candle start and end
|
|
_calculate_ohlcv_candle_start_and_end(trades, timeframe)
|
|
|
|
# get date of earliest max_candles candle
|
|
max_candles = config_orderflow["max_candles"]
|
|
start_date = dataframe.tail(max_candles).date.iat[0]
|
|
# slice of trades that are before current ohlcv candles to make groupby faster
|
|
trades = trades.loc[trades["candle_start"] >= start_date]
|
|
trades.reset_index(inplace=True, drop=True)
|
|
|
|
# group trades by candle start
|
|
trades_grouped_by_candle_start = trades.groupby("candle_start", group_keys=False)
|
|
# Create Series to hold complex data
|
|
trades_series = pd.Series(index=dataframe.index, dtype=object)
|
|
orderflow_series = pd.Series(index=dataframe.index, dtype=object)
|
|
imbalances_series = pd.Series(index=dataframe.index, dtype=object)
|
|
stacked_imbalances_bid_series = pd.Series(index=dataframe.index, dtype=object)
|
|
stacked_imbalances_ask_series = pd.Series(index=dataframe.index, dtype=object)
|
|
|
|
trades_grouped_by_candle_start = trades.groupby("candle_start", group_keys=False)
|
|
for candle_start, trades_grouped_df in trades_grouped_by_candle_start:
|
|
is_between = candle_start == dataframe["date"]
|
|
if is_between.any():
|
|
from freqtrade.exchange import timeframe_to_next_date
|
|
|
|
candle_next = timeframe_to_next_date(timeframe, typing.cast(datetime, candle_start))
|
|
if candle_next not in trades_grouped_by_candle_start.groups:
|
|
logger.warning(
|
|
f"candle at {candle_start} with {len(trades_grouped_df)} trades "
|
|
f"might be unfinished, because no finished trades at {candle_next}"
|
|
)
|
|
|
|
indices = dataframe.index[is_between].tolist()
|
|
# Add trades to each candle
|
|
trades_series.loc[indices] = [
|
|
trades_grouped_df.drop(columns=["candle_start", "candle_end"]).to_dict(
|
|
orient="records"
|
|
)
|
|
]
|
|
# Use caching mechanism
|
|
if (candle_start, candle_next) in cached_grouped_trades:
|
|
cache_entry = cached_grouped_trades[
|
|
(typing.cast(datetime, candle_start), candle_next)
|
|
]
|
|
# dataframe.loc[is_between] = cache_entry # doesn't take, so we need workaround:
|
|
# Create a dictionary of the column values to be assigned
|
|
update_dict = {c: cache_entry[c].iat[0] for c in cache_entry.columns}
|
|
# Assign the values using the update_dict
|
|
dataframe.loc[is_between, update_dict.keys()] = pd.DataFrame(
|
|
[update_dict], index=dataframe.loc[is_between].index
|
|
)
|
|
continue
|
|
|
|
# Calculate orderflow for each candle
|
|
orderflow = trades_to_volumeprofile_with_total_delta_bid_ask(
|
|
trades_grouped_df, scale=config_orderflow["scale"]
|
|
)
|
|
orderflow_series.loc[indices] = [orderflow.to_dict(orient="index")]
|
|
# Calculate imbalances for each candle's orderflow
|
|
imbalances = trades_orderflow_to_imbalances(
|
|
orderflow,
|
|
imbalance_ratio=config_orderflow["imbalance_ratio"],
|
|
imbalance_volume=config_orderflow["imbalance_volume"],
|
|
)
|
|
imbalances_series.loc[indices] = [imbalances.to_dict(orient="index")]
|
|
|
|
stacked_imbalance_range = config_orderflow["stacked_imbalance_range"]
|
|
stacked_imbalances_bid_series.loc[indices] = [
|
|
stacked_imbalance_bid(
|
|
imbalances, stacked_imbalance_range=stacked_imbalance_range
|
|
)
|
|
]
|
|
stacked_imbalances_ask_series.loc[indices] = [
|
|
stacked_imbalance_ask(
|
|
imbalances, stacked_imbalance_range=stacked_imbalance_range
|
|
)
|
|
]
|
|
|
|
bid = np.where(
|
|
trades_grouped_df["side"].str.contains("sell"), trades_grouped_df["amount"], 0
|
|
)
|
|
|
|
ask = np.where(
|
|
trades_grouped_df["side"].str.contains("buy"), trades_grouped_df["amount"], 0
|
|
)
|
|
deltas_per_trade = ask - bid
|
|
min_delta = deltas_per_trade.cumsum().min()
|
|
max_delta = deltas_per_trade.cumsum().max()
|
|
dataframe.loc[indices, "max_delta"] = max_delta
|
|
dataframe.loc[indices, "min_delta"] = min_delta
|
|
|
|
dataframe.loc[indices, "bid"] = bid.sum()
|
|
dataframe.loc[indices, "ask"] = ask.sum()
|
|
dataframe.loc[indices, "delta"] = (
|
|
dataframe.loc[indices, "ask"] - dataframe.loc[indices, "bid"]
|
|
)
|
|
dataframe.loc[indices, "total_trades"] = len(trades_grouped_df)
|
|
|
|
# Cache the result
|
|
cached_grouped_trades[(typing.cast(datetime, candle_start), candle_next)] = (
|
|
dataframe.loc[is_between].copy()
|
|
)
|
|
|
|
# Maintain cache size
|
|
if (
|
|
config.get("runmode") in (RunMode.DRY_RUN, RunMode.LIVE)
|
|
and len(cached_grouped_trades) > config_orderflow["cache_size"]
|
|
):
|
|
cached_grouped_trades.popitem(last=False)
|
|
else:
|
|
logger.debug(f"Found NO candles for trades starting with {candle_start}")
|
|
logger.debug(f"trades.groups_keys in {time.time() - start_time} seconds")
|
|
|
|
# Merge the complex data Series back into the DataFrame
|
|
dataframe["trades"] = trades_series
|
|
dataframe["orderflow"] = orderflow_series
|
|
dataframe["imbalances"] = imbalances_series
|
|
dataframe["stacked_imbalances_bid"] = stacked_imbalances_bid_series
|
|
dataframe["stacked_imbalances_ask"] = stacked_imbalances_ask_series
|
|
|
|
except Exception as e:
|
|
logger.exception("Error populating dataframe with trades")
|
|
raise DependencyException(e)
|
|
|
|
return dataframe, cached_grouped_trades
|
|
|
|
|
|
def trades_to_volumeprofile_with_total_delta_bid_ask(
|
|
trades: pd.DataFrame, scale: float
|
|
) -> pd.DataFrame:
|
|
"""
|
|
:param trades: dataframe
|
|
:param scale: scale aka bin size e.g. 0.5
|
|
:return: trades binned to levels according to scale aka orderflow
|
|
"""
|
|
df = pd.DataFrame([], columns=DEFAULT_ORDERFLOW_COLUMNS)
|
|
# create bid, ask where side is sell or buy
|
|
df["bid_amount"] = np.where(trades["side"].str.contains("sell"), trades["amount"], 0)
|
|
df["ask_amount"] = np.where(trades["side"].str.contains("buy"), trades["amount"], 0)
|
|
df["bid"] = np.where(trades["side"].str.contains("sell"), 1, 0)
|
|
df["ask"] = np.where(trades["side"].str.contains("buy"), 1, 0)
|
|
# round the prices to the nearest multiple of the scale
|
|
df["price"] = ((trades["price"] / scale).round() * scale).astype("float64").values
|
|
if df.empty:
|
|
df["total"] = np.nan
|
|
df["delta"] = np.nan
|
|
return df
|
|
|
|
df["delta"] = df["ask_amount"] - df["bid_amount"]
|
|
df["total_volume"] = df["ask_amount"] + df["bid_amount"]
|
|
df["total_trades"] = df["ask"] + df["bid"]
|
|
|
|
# group to bins aka apply scale
|
|
df = df.groupby("price").sum(numeric_only=True)
|
|
return df
|
|
|
|
|
|
def trades_orderflow_to_imbalances(df: pd.DataFrame, imbalance_ratio: int, imbalance_volume: int):
|
|
"""
|
|
:param df: dataframes with bid and ask
|
|
:param imbalance_ratio: imbalance_ratio e.g. 3
|
|
:param imbalance_volume: imbalance volume e.g. 10
|
|
:return: dataframe with bid and ask imbalance
|
|
"""
|
|
bid = df.bid
|
|
# compares bid and ask diagonally
|
|
ask = df.ask.shift(-1)
|
|
bid_imbalance = (bid / ask) > (imbalance_ratio)
|
|
# overwrite bid_imbalance with False if volume is not big enough
|
|
bid_imbalance_filtered = np.where(df.total_volume < imbalance_volume, False, bid_imbalance)
|
|
ask_imbalance = (ask / bid) > (imbalance_ratio)
|
|
# overwrite ask_imbalance with False if volume is not big enough
|
|
ask_imbalance_filtered = np.where(df.total_volume < imbalance_volume, False, ask_imbalance)
|
|
dataframe = pd.DataFrame(
|
|
{"bid_imbalance": bid_imbalance_filtered, "ask_imbalance": ask_imbalance_filtered},
|
|
index=df.index,
|
|
)
|
|
|
|
return dataframe
|
|
|
|
|
|
def stacked_imbalance(
|
|
df: pd.DataFrame, label: str, stacked_imbalance_range: int, should_reverse: bool
|
|
):
|
|
"""
|
|
y * (y.groupby((y != y.shift()).cumsum()).cumcount() + 1)
|
|
https://stackoverflow.com/questions/27626542/counting-consecutive-positive-values-in-python-pandas-array
|
|
"""
|
|
imbalance = df[f"{label}_imbalance"]
|
|
int_series = pd.Series(np.where(imbalance, 1, 0))
|
|
stacked = int_series * (
|
|
int_series.groupby((int_series != int_series.shift()).cumsum()).cumcount() + 1
|
|
)
|
|
|
|
max_stacked_imbalance_idx = stacked.index[stacked >= stacked_imbalance_range]
|
|
stacked_imbalance_price = np.nan
|
|
if not max_stacked_imbalance_idx.empty:
|
|
idx = (
|
|
max_stacked_imbalance_idx[0]
|
|
if not should_reverse
|
|
else np.flipud(max_stacked_imbalance_idx)[0]
|
|
)
|
|
stacked_imbalance_price = imbalance.index[idx]
|
|
return stacked_imbalance_price
|
|
|
|
|
|
def stacked_imbalance_ask(df: pd.DataFrame, stacked_imbalance_range: int):
|
|
return stacked_imbalance(df, "ask", stacked_imbalance_range, should_reverse=True)
|
|
|
|
|
|
def stacked_imbalance_bid(df: pd.DataFrame, stacked_imbalance_range: int):
|
|
return stacked_imbalance(df, "bid", stacked_imbalance_range, should_reverse=False)
|