mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
c06ae41fed
https://github.com/catboost/catboost/issues/2195 is fixed, so this SHOULD work
62 lines
2.0 KiB
Python
62 lines
2.0 KiB
Python
import logging
|
|
from pathlib import Path
|
|
from typing import Any, Dict
|
|
|
|
from catboost import CatBoostClassifier, Pool
|
|
|
|
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class CatboostClassifier(BaseClassifierModel):
|
|
"""
|
|
User created prediction model. The class inherits IFreqaiModel, which
|
|
means it has full access to all Frequency AI functionality. Typically,
|
|
users would use this to override the common `fit()`, `train()`, or
|
|
`predict()` methods to add their custom data handling tools or change
|
|
various aspects of the training that cannot be configured via the
|
|
top level config.json file.
|
|
"""
|
|
|
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
|
"""
|
|
User sets up the training and test data to fit their desired model here
|
|
:param data_dictionary: the dictionary holding all data for train, test,
|
|
labels, weights
|
|
:param dk: The datakitchen object for the current coin/model
|
|
"""
|
|
|
|
train_data = Pool(
|
|
data=data_dictionary["train_features"],
|
|
label=data_dictionary["train_labels"],
|
|
weight=data_dictionary["train_weights"],
|
|
)
|
|
if self.freqai_info.get("data_split_parameters", {}).get("test_size", 0.1) == 0:
|
|
test_data = None
|
|
else:
|
|
test_data = Pool(
|
|
data=data_dictionary["test_features"],
|
|
label=data_dictionary["test_labels"],
|
|
weight=data_dictionary["test_weights"],
|
|
)
|
|
|
|
cbr = CatBoostClassifier(
|
|
allow_writing_files=True,
|
|
loss_function="MultiClass",
|
|
train_dir=Path(dk.data_path),
|
|
**self.model_training_parameters,
|
|
)
|
|
|
|
init_model = self.get_init_model(dk.pair)
|
|
|
|
cbr.fit(
|
|
X=train_data,
|
|
eval_set=test_data,
|
|
init_model=init_model,
|
|
)
|
|
|
|
return cbr
|