mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-15 04:33:57 +00:00
210 lines
6.3 KiB
Python
210 lines
6.3 KiB
Python
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
|
|
|
from datetime import datetime
|
|
from typing import Optional
|
|
|
|
import talib.abstract as ta
|
|
from pandas import DataFrame
|
|
|
|
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
|
from freqtrade.persistence import Trade
|
|
from freqtrade.strategy import (
|
|
BooleanParameter,
|
|
DecimalParameter,
|
|
IntParameter,
|
|
IStrategy,
|
|
RealParameter,
|
|
)
|
|
|
|
|
|
class StrategyTestV3(IStrategy):
|
|
"""
|
|
Strategy used by tests freqtrade bot.
|
|
Please do not modify this strategy, it's intended for internal use only.
|
|
Please look at the SampleStrategy in the user_data/strategy directory
|
|
or strategy repository https://github.com/freqtrade/freqtrade-strategies
|
|
for samples and inspiration.
|
|
"""
|
|
|
|
INTERFACE_VERSION = 3
|
|
|
|
# Minimal ROI designed for the strategy
|
|
minimal_roi = {"40": 0.0, "30": 0.01, "20": 0.02, "0": 0.04}
|
|
|
|
# Optimal max_open_trades for the strategy
|
|
max_open_trades = -1
|
|
|
|
# Optimal stoploss designed for the strategy
|
|
stoploss = -0.10
|
|
|
|
# Optimal timeframe for the strategy
|
|
timeframe = "5m"
|
|
|
|
# Optional order type mapping
|
|
order_types = {
|
|
"entry": "limit",
|
|
"exit": "limit",
|
|
"stoploss": "limit",
|
|
"stoploss_on_exchange": False,
|
|
}
|
|
|
|
# Number of candles the strategy requires before producing valid signals
|
|
startup_candle_count: int = 20
|
|
|
|
# Optional time in force for orders
|
|
order_time_in_force = {
|
|
"entry": "gtc",
|
|
"exit": "gtc",
|
|
}
|
|
|
|
buy_params = {
|
|
"buy_rsi": 35,
|
|
# Intentionally not specified, so "default" is tested
|
|
# 'buy_plusdi': 0.4
|
|
}
|
|
|
|
sell_params = {"sell_rsi": 74, "sell_minusdi": 0.4}
|
|
|
|
buy_rsi = IntParameter([0, 50], default=30, space="buy")
|
|
buy_plusdi = RealParameter(low=0, high=1, default=0.5, space="buy")
|
|
sell_rsi = IntParameter(low=50, high=100, default=70, space="sell")
|
|
sell_minusdi = DecimalParameter(
|
|
low=0, high=1, default=0.5001, decimals=3, space="sell", load=False
|
|
)
|
|
protection_enabled = BooleanParameter(default=True)
|
|
protection_cooldown_lookback = IntParameter([0, 50], default=30)
|
|
|
|
# TODO: Can this work with protection tests? (replace HyperoptableStrategy implicitly ... )
|
|
@property
|
|
def protections(self):
|
|
prot = []
|
|
if self.protection_enabled.value:
|
|
# Workaround to simplify tests. This will not work in real scenarios.
|
|
prot = self.config.get("_strategy_protections", {})
|
|
return prot
|
|
|
|
bot_started = False
|
|
|
|
def bot_start(self):
|
|
self.bot_started = True
|
|
|
|
def informative_pairs(self):
|
|
return []
|
|
|
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
# Momentum Indicator
|
|
# ------------------------------------
|
|
|
|
# ADX
|
|
dataframe["adx"] = ta.ADX(dataframe)
|
|
|
|
# MACD
|
|
macd = ta.MACD(dataframe)
|
|
dataframe["macd"] = macd["macd"]
|
|
dataframe["macdsignal"] = macd["macdsignal"]
|
|
dataframe["macdhist"] = macd["macdhist"]
|
|
|
|
# Minus Directional Indicator / Movement
|
|
dataframe["minus_di"] = ta.MINUS_DI(dataframe)
|
|
|
|
# Plus Directional Indicator / Movement
|
|
dataframe["plus_di"] = ta.PLUS_DI(dataframe)
|
|
|
|
# RSI
|
|
dataframe["rsi"] = ta.RSI(dataframe)
|
|
|
|
# Stoch fast
|
|
stoch_fast = ta.STOCHF(dataframe)
|
|
dataframe["fastd"] = stoch_fast["fastd"]
|
|
dataframe["fastk"] = stoch_fast["fastk"]
|
|
|
|
# Bollinger bands
|
|
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
|
dataframe["bb_lowerband"] = bollinger["lower"]
|
|
dataframe["bb_middleband"] = bollinger["mid"]
|
|
dataframe["bb_upperband"] = bollinger["upper"]
|
|
|
|
# EMA - Exponential Moving Average
|
|
dataframe["ema10"] = ta.EMA(dataframe, timeperiod=10)
|
|
|
|
return dataframe
|
|
|
|
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
dataframe.loc[
|
|
(
|
|
(dataframe["rsi"] < self.buy_rsi.value)
|
|
& (dataframe["fastd"] < 35)
|
|
& (dataframe["adx"] > 30)
|
|
& (dataframe["plus_di"] > self.buy_plusdi.value)
|
|
)
|
|
| ((dataframe["adx"] > 65) & (dataframe["plus_di"] > self.buy_plusdi.value)),
|
|
"enter_long",
|
|
] = 1
|
|
dataframe.loc[
|
|
(qtpylib.crossed_below(dataframe["rsi"], self.sell_rsi.value)),
|
|
("enter_short", "enter_tag"),
|
|
] = (1, "short_Tag")
|
|
|
|
return dataframe
|
|
|
|
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
dataframe.loc[
|
|
(
|
|
(
|
|
(qtpylib.crossed_above(dataframe["rsi"], self.sell_rsi.value))
|
|
| (qtpylib.crossed_above(dataframe["fastd"], 70))
|
|
)
|
|
& (dataframe["adx"] > 10)
|
|
& (dataframe["minus_di"] > 0)
|
|
)
|
|
| ((dataframe["adx"] > 70) & (dataframe["minus_di"] > self.sell_minusdi.value)),
|
|
"exit_long",
|
|
] = 1
|
|
|
|
dataframe.loc[
|
|
(qtpylib.crossed_above(dataframe["rsi"], self.buy_rsi.value)),
|
|
("exit_short", "exit_tag"),
|
|
] = (1, "short_Tag")
|
|
|
|
return dataframe
|
|
|
|
def leverage(
|
|
self,
|
|
pair: str,
|
|
current_time: datetime,
|
|
current_rate: float,
|
|
proposed_leverage: float,
|
|
max_leverage: float,
|
|
entry_tag: Optional[str],
|
|
side: str,
|
|
**kwargs,
|
|
) -> float:
|
|
# Return 3.0 in all cases.
|
|
# Bot-logic must make sure it's an allowed leverage and eventually adjust accordingly.
|
|
|
|
return 3.0
|
|
|
|
def adjust_trade_position(
|
|
self,
|
|
trade: Trade,
|
|
current_time: datetime,
|
|
current_rate: float,
|
|
current_profit: float,
|
|
min_stake: Optional[float],
|
|
max_stake: float,
|
|
current_entry_rate: float,
|
|
current_exit_rate: float,
|
|
current_entry_profit: float,
|
|
current_exit_profit: float,
|
|
**kwargs,
|
|
) -> Optional[float]:
|
|
if current_profit < -0.0075:
|
|
orders = trade.select_filled_orders(trade.entry_side)
|
|
return round(orders[0].stake_amount, 0)
|
|
|
|
return None
|
|
|
|
|
|
class StrategyTestV3Futures(StrategyTestV3):
|
|
can_short = True
|