freqtrade_origin/freqtrade/strategy/backtest_lookahead_bias_checker.py
hippocritical 2b416d3b62 - Added a first version of docs (needs checking)
- optimized pairs for entry_varholder and exit_varholder to only check a single pair instead of all pairs.
- bias-check of freqai strategies now possible
- added condition to not crash when compared_df is empty (meaning no differences have been found)
2023-04-16 23:47:10 +02:00

253 lines
10 KiB
Python
Executable File

import copy
import pathlib
import shutil
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.history import get_timerange
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.optimize.backtesting import Backtesting
class VarHolder:
timerange: TimeRange
data: DataFrame
indicators: DataFrame
result: DataFrame
compared: DataFrame
from_dt: datetime
to_dt: datetime
compared_dt: datetime
class Analysis:
def __init__(self):
self.total_signals = 0
self.false_entry_signals = 0
self.false_exit_signals = 0
self.false_indicators = []
self.has_bias = False
total_signals: int
false_entry_signals: int
false_exit_signals: int
false_indicators: list
has_bias: bool
class BacktestLookaheadBiasChecker:
def __init__(self):
self.exportfilename = None
self.strategy_obj = None
self.current_analysis = None
self.local_config = None
self.full_varHolder = None
self.entry_varHolder = None
self.exit_varHolder = None
self.entry_varHolders = []
self.exit_varHolders = []
self.backtesting = None
self.minimum_trade_amount = None
self.targeted_trade_amount = None
self.failed_bias_check = True
@staticmethod
def dt_to_timestamp(dt):
timestamp = int(dt.replace(tzinfo=timezone.utc).timestamp())
return timestamp
@staticmethod
def get_result(backtesting, processed):
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date
)
return result
@staticmethod
def report_signal(result, column_name, checked_timestamp):
df = result['results']
row_count = df[column_name].shape[0]
if row_count == 0:
return False
else:
df_cut = df[(df[column_name] == checked_timestamp)]
if df_cut[column_name].shape[0] == 0:
# print("did NOT find the same signal in column " + column_name +
# " at timestamp " + str(checked_timestamp))
return False
else:
return True
return False
# analyzes two data frames with processed indicators and shows differences between them.
def analyze_indicators(self, full_vars, cut_vars, current_pair):
# extract dataframes
cut_df = cut_vars.indicators[current_pair]
full_df = full_vars.indicators[current_pair]
# cut longer dataframe to length of the shorter
full_df_cut = full_df[
(full_df.date == cut_vars.compared_dt)
].reset_index(drop=True)
cut_df_cut = cut_df[
(cut_df.date == cut_vars.compared_dt)
].reset_index(drop=True)
# compare dataframes
if full_df_cut.shape[0] != 0:
if cut_df_cut.shape[0] != 0:
compare_df = full_df_cut.compare(cut_df_cut)
if compare_df.shape[0] > 0:
for col_name, values in compare_df.items():
col_idx = compare_df.columns.get_loc(col_name)
compare_df_row = compare_df.iloc[0]
# compare_df now comprises tuples with [1] having either 'self' or 'other'
if 'other' in col_name[1]:
continue
self_value = compare_df_row[col_idx]
other_value = compare_df_row[col_idx + 1]
# output differences
if self_value != other_value:
if not self.current_analysis.false_indicators.__contains__(col_name[0]):
self.current_analysis.false_indicators.append(col_name[0])
print(f"=> found look ahead bias in indicator {col_name[0]}. " +
f"{str(self_value)} != {str(other_value)}")
def prepare_data(self, varHolder, pairs_to_load):
# purge previous data
abs_folder_path = pathlib.Path("user_data/models/uniqe-id").resolve()
# remove folder and its contents
if pathlib.Path.exists(abs_folder_path):
shutil.rmtree(abs_folder_path)
prepare_data_config = copy.deepcopy(self.local_config)
prepare_data_config['timerange'] = (str(self.dt_to_timestamp(varHolder.from_dt)) + "-" +
str(self.dt_to_timestamp(varHolder.to_dt)))
prepare_data_config['exchange']['pair_whitelist'] = pairs_to_load
self.backtesting = Backtesting(prepare_data_config)
self.backtesting._set_strategy(self.backtesting.strategylist[0])
varHolder.data, varHolder.timerange = self.backtesting.load_bt_data()
self.backtesting.load_bt_data_detail()
varHolder.indicators = self.backtesting.strategy.advise_all_indicators(varHolder.data)
varHolder.result = self.get_result(self.backtesting, varHolder.indicators)
def start(self, config, strategy_obj: dict, args) -> None:
# deepcopy so we can change the pairs for the 2ndary runs
# and not worry about another strategy to check after.
self.local_config = deepcopy(config)
self.local_config['strategy_list'] = [strategy_obj['name']]
self.current_analysis = Analysis()
self.minimum_trade_amount = args['minimum_trade_amount']
self.targeted_trade_amount = args['targeted_trade_amount']
self.exportfilename = args['exportfilename']
self.strategy_obj = strategy_obj
# first make a single backtest
self.full_varHolder = VarHolder()
# define datetime in human-readable format
parsed_timerange = TimeRange.parse_timerange(config['timerange'])
if parsed_timerange.startdt is None:
self.full_varHolder.from_dt = datetime.utcfromtimestamp(0)
else:
self.full_varHolder.from_dt = parsed_timerange.startdt
if parsed_timerange.stopdt is None:
self.full_varHolder.to_dt = datetime.now()
else:
self.full_varHolder.to_dt = parsed_timerange.stopdt
self.prepare_data(self.full_varHolder, self.local_config['pairs'])
found_signals: int = self.full_varHolder.result['results'].shape[0] + 1
if found_signals >= self.targeted_trade_amount:
print(f"Found {found_signals} trades, calculating {self.targeted_trade_amount} trades.")
elif self.targeted_trade_amount >= found_signals >= self.minimum_trade_amount:
print(f"Only found {found_signals} trades. Calculating all available trades.")
else:
print(f"found {found_signals} trades "
f"which is less than minimum_trade_amount {self.minimum_trade_amount}. "
f"Cancelling this backtest lookahead bias test.")
return
# now we loop through all entry signals
# starting from the same datetime to avoid miss-reports of bias
for idx, result_row in self.full_varHolder.result['results'].iterrows():
if self.current_analysis.total_signals == self.targeted_trade_amount:
break
# if force-sold, ignore this signal since here it will unconditionally exit.
if result_row.close_date == self.dt_to_timestamp(self.full_varHolder.to_dt):
continue
self.current_analysis.total_signals += 1
self.entry_varHolder = VarHolder()
self.exit_varHolder = VarHolder()
self.entry_varHolders.append(self.entry_varHolder)
self.exit_varHolders.append(self.exit_varHolder)
self.entry_varHolder.from_dt = self.full_varHolder.from_dt
self.entry_varHolder.compared_dt = result_row['open_date']
# to_dt needs +1 candle since it won't buy on the last candle
self.entry_varHolder.to_dt = (result_row['open_date'] +
timedelta(minutes=timeframe_to_minutes(
self.local_config['timeframe'])))
self.prepare_data(self.entry_varHolder, [result_row['pair']])
# to_dt needs +1 candle since it will always exit/force-exit trades on the last candle
self.exit_varHolder.from_dt = self.full_varHolder.from_dt
self.exit_varHolder.to_dt = (result_row['close_date'] +
timedelta(minutes=timeframe_to_minutes(
self.local_config['timeframe'])))
self.exit_varHolder.compared_dt = result_row['close_date']
self.prepare_data(self.exit_varHolder, [result_row['pair']])
# register if buy signal is broken
if not self.report_signal(
self.entry_varHolder.result, "open_date", self.entry_varHolder.compared_dt):
self.current_analysis.false_entry_signals += 1
# register if buy or sell signal is broken
if not self.report_signal(
self.exit_varHolder.result, "close_date", self.exit_varHolder.compared_dt):
self.current_analysis.false_exit_signals += 1
if len(self.entry_varHolders) >= 10:
pass
# check if the indicators themselves contain biased data
self.analyze_indicators(self.full_varHolder, self.entry_varHolder, result_row['pair'])
self.analyze_indicators(self.full_varHolder, self.exit_varHolder, result_row['pair'])
if (self.current_analysis.false_entry_signals > 0 or
self.current_analysis.false_exit_signals > 0 or
len(self.current_analysis.false_indicators) > 0):
print(" => " + self.local_config['strategy_list'][0] + ": bias detected!")
self.current_analysis.has_bias = True
else:
print(self.local_config['strategy_list'][0] + ": no bias detected")
self.failed_bias_check = False