package indicator import ( "math" "git.qtrade.icu/lychiyu/qbtrade/pkg/datatype/floats" "git.qtrade.icu/lychiyu/qbtrade/pkg/types" ) // Refer: Arnaud Legoux Moving Average // Refer: https://capital.com/arnaud-legoux-moving-average // Also check https://github.com/DaveSkender/Stock.Indicators/blob/main/src/a-d/Alma/Alma.cs // // The Arnaud Legoux Moving Average (ALMA) is a technical analysis indicator that is used to smooth price data and reduce the lag associated // with traditional moving averages. It was developed by Arnaud Legoux and is based on the weighted moving average, with the weighting factors // determined using a Gaussian function. The ALMA is calculated by taking the weighted moving average of the input data using weighting factors // that are based on the standard deviation of the data and the specified length of the moving average. This resulting average is then plotted // on the price chart as a line, which can be used to make predictions about future price movements. The ALMA is typically more responsive to // changes in the underlying data than a simple moving average, but may be less reliable in trending markets. // // @param offset: Gaussian applied to the combo line. 1->ema, 0->sma // @param sigma: the standard deviation applied to the combo line. This makes the combo line sharper // //go:generate callbackgen -type ALMA type ALMA struct { types.SeriesBase types.IntervalWindow // required Offset float64 // required: recommend to be 0.5 Sigma int // required: recommend to be 5 weight []float64 sum float64 input []float64 Values floats.Slice UpdateCallbacks []func(value float64) } const MaxNumOfALMA = 5_000 const MaxNumOfALMATruncateSize = 100 func (inc *ALMA) Update(value float64) { if inc.weight == nil { inc.SeriesBase.Series = inc inc.weight = make([]float64, inc.Window) m := inc.Offset * (float64(inc.Window) - 1.) s := float64(inc.Window) / float64(inc.Sigma) inc.sum = 0. for i := 0; i < inc.Window; i++ { diff := float64(i) - m wt := math.Exp(-diff * diff / 2. / s / s) inc.sum += wt inc.weight[i] = wt } } inc.input = append(inc.input, value) if len(inc.input) >= inc.Window { weightedSum := 0.0 inc.input = inc.input[len(inc.input)-inc.Window:] for i := 0; i < inc.Window; i++ { weightedSum += inc.weight[inc.Window-i-1] * inc.input[i] } inc.Values.Push(weightedSum / inc.sum) if len(inc.Values) > MaxNumOfALMA { inc.Values = inc.Values[MaxNumOfALMATruncateSize-1:] } } } func (inc *ALMA) Last(i int) float64 { return inc.Values.Last(i) } func (inc *ALMA) Index(i int) float64 { return inc.Last(i) } func (inc *ALMA) Length() int { return len(inc.Values) } var _ types.SeriesExtend = &ALMA{} func (inc *ALMA) CalculateAndUpdate(allKLines []types.KLine) { if inc.input == nil { for _, k := range allKLines { inc.Update(k.Close.Float64()) inc.EmitUpdate(inc.Last(0)) } return } inc.Update(allKLines[len(allKLines)-1].Close.Float64()) inc.EmitUpdate(inc.Last(0)) }