2023-03-05 14:59:24 +00:00
|
|
|
import logging
|
2023-04-03 12:19:10 +00:00
|
|
|
from abc import ABC, abstractmethod
|
2023-03-05 14:59:24 +00:00
|
|
|
|
|
|
|
import torch
|
|
|
|
|
2023-05-29 11:33:29 +00:00
|
|
|
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
2023-04-03 13:03:15 +00:00
|
|
|
from freqtrade.freqai.torch.PyTorchDataConvertor import PyTorchDataConvertor
|
2023-03-05 14:59:24 +00:00
|
|
|
|
2023-03-08 14:03:36 +00:00
|
|
|
|
2023-03-05 14:59:24 +00:00
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
2023-05-29 11:33:29 +00:00
|
|
|
class BasePyTorchModel(IFreqaiModel, ABC):
|
2023-03-05 14:59:24 +00:00
|
|
|
"""
|
2023-03-09 09:14:54 +00:00
|
|
|
Base class for PyTorch type models.
|
2023-04-03 12:19:10 +00:00
|
|
|
User *must* inherit from this class and set fit() and predict() and
|
|
|
|
data_convertor property.
|
2023-03-05 14:59:24 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, **kwargs):
|
2023-03-09 11:29:11 +00:00
|
|
|
super().__init__(config=kwargs["config"])
|
|
|
|
self.dd.model_type = "pytorch"
|
2024-10-08 05:20:49 +00:00
|
|
|
self.device = (
|
|
|
|
"mps"
|
|
|
|
if torch.backends.mps.is_available() and torch.backends.mps.is_built()
|
|
|
|
else ("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
)
|
2024-05-12 15:12:20 +00:00
|
|
|
test_size = self.freqai_info.get("data_split_parameters", {}).get("test_size")
|
2023-03-28 11:40:23 +00:00
|
|
|
self.splits = ["train", "test"] if test_size != 0 else ["train"]
|
2023-05-01 13:18:03 +00:00
|
|
|
self.window_size = self.freqai_info.get("conv_width", 1)
|
2023-03-05 14:59:24 +00:00
|
|
|
|
2023-04-03 12:19:10 +00:00
|
|
|
@property
|
|
|
|
@abstractmethod
|
|
|
|
def data_convertor(self) -> PyTorchDataConvertor:
|
2023-04-03 14:06:39 +00:00
|
|
|
"""
|
|
|
|
a class responsible for converting `*_features` & `*_labels` pandas dataframes
|
|
|
|
to pytorch tensors.
|
|
|
|
"""
|
2023-04-03 12:19:10 +00:00
|
|
|
raise NotImplementedError("Abstract property")
|