freqtrade_origin/freqtrade/plugins/pairlist/PercentChangePairList.py

330 lines
13 KiB
Python
Raw Normal View History

"""
Percent Change PairList provider
Provides dynamic pair list based on trade change
sorted based on percentage change in price over a
defined period or as coming from ticker
"""
2024-07-24 18:34:06 +00:00
import logging
from datetime import timedelta
from typing import Any, Optional
from cachetools import TTLCache
2024-07-27 14:13:17 +00:00
from pandas import DataFrame
2024-07-27 14:13:17 +00:00
from freqtrade.constants import ListPairsWithTimeframes, PairWithTimeframe
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_prev_date
2024-09-04 04:42:51 +00:00
from freqtrade.exchange.exchange_types import Ticker, Tickers
from freqtrade.plugins.pairlist.IPairList import IPairList, PairlistParameter, SupportsBacktesting
from freqtrade.util import dt_now, format_ms_time
logger = logging.getLogger(__name__)
class PercentChangePairList(IPairList):
is_pairlist_generator = True
supports_backtesting = SupportsBacktesting.NO
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
if "number_assets" not in self._pairlistconfig:
raise OperationalException(
"`number_assets` not specified. Please check your configuration "
'for "pairlist.config.number_assets"'
)
self._stake_currency = self._config["stake_currency"]
self._number_pairs = self._pairlistconfig["number_assets"]
2024-07-27 14:07:51 +00:00
self._min_value = self._pairlistconfig.get("min_value", None)
self._max_value = self._pairlistconfig.get("max_value", None)
self._refresh_period = self._pairlistconfig.get("refresh_period", 1800)
self._pair_cache: TTLCache = TTLCache(maxsize=1, ttl=self._refresh_period)
self._lookback_days = self._pairlistconfig.get("lookback_days", 0)
self._lookback_timeframe = self._pairlistconfig.get("lookback_timeframe", "1d")
self._lookback_period = self._pairlistconfig.get("lookback_period", 0)
self._sort_direction: Optional[str] = self._pairlistconfig.get("sort_direction", "desc")
self._def_candletype = self._config["candle_type_def"]
if (self._lookback_days > 0) & (self._lookback_period > 0):
raise OperationalException(
"Ambiguous configuration: lookback_days and lookback_period both set in pairlist "
"config. Please set lookback_days only or lookback_period and lookback_timeframe "
"and restart the bot."
)
# overwrite lookback timeframe and days when lookback_days is set
if self._lookback_days > 0:
self._lookback_timeframe = "1d"
self._lookback_period = self._lookback_days
# get timeframe in minutes and seconds
self._tf_in_min = timeframe_to_minutes(self._lookback_timeframe)
_tf_in_sec = self._tf_in_min * 60
# whether to use range lookback or not
self._use_range = (self._tf_in_min > 0) & (self._lookback_period > 0)
if self._use_range & (self._refresh_period < _tf_in_sec):
raise OperationalException(
f"Refresh period of {self._refresh_period} seconds is smaller than one "
f"timeframe of {self._lookback_timeframe}. Please adjust refresh_period "
f"to at least {_tf_in_sec} and restart the bot."
)
if not self._use_range and not (
self._exchange.exchange_has("fetchTickers")
and self._exchange.get_option("tickers_have_percentage")
):
raise OperationalException(
"Exchange does not support dynamic whitelist in this configuration. "
"Please edit your config and either remove PercentChangePairList, "
"or switch to using candles. and restart the bot."
)
candle_limit = self._exchange.ohlcv_candle_limit(
self._lookback_timeframe, self._config["candle_type_def"]
)
if self._lookback_period > candle_limit:
raise OperationalException(
"ChangeFilter requires lookback_period to not "
f"exceed exchange max request size ({candle_limit})"
)
@property
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requires tickers, an empty Dict is passed
as tickers argument to filter_pairlist
"""
return not self._use_range
def short_desc(self) -> str:
"""
Short whitelist method description - used for startup-messages
"""
return f"{self.name} - top {self._pairlistconfig['number_assets']} percent change pairs."
@staticmethod
def description() -> str:
return "Provides dynamic pair list based on percentage change."
@staticmethod
def available_parameters() -> dict[str, PairlistParameter]:
return {
"number_assets": {
"type": "number",
"default": 30,
"description": "Number of assets",
"help": "Number of assets to use from the pairlist",
},
"min_value": {
"type": "number",
2024-07-28 15:40:20 +00:00
"default": None,
"description": "Minimum value",
"help": "Minimum value to use for filtering the pairlist.",
},
"max_value": {
"type": "number",
"default": None,
"description": "Maximum value",
"help": "Maximum value to use for filtering the pairlist.",
},
"sort_direction": {
"type": "option",
"default": "desc",
"options": ["", "asc", "desc"],
"description": "Sort pairlist",
"help": "Sort Pairlist ascending or descending by rate of change.",
},
**IPairList.refresh_period_parameter(),
"lookback_days": {
"type": "number",
"default": 0,
"description": "Lookback Days",
"help": "Number of days to look back at.",
},
"lookback_timeframe": {
"type": "string",
"default": "1d",
"description": "Lookback Timeframe",
"help": "Timeframe to use for lookback.",
},
"lookback_period": {
"type": "number",
"default": 0,
"description": "Lookback Period",
"help": "Number of periods to look back at.",
},
}
def gen_pairlist(self, tickers: Tickers) -> list[str]:
"""
Generate the pairlist
:param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: List of pairs
"""
pairlist = self._pair_cache.get("pairlist")
if pairlist:
# Item found - no refresh necessary
return pairlist.copy()
else:
# Use fresh pairlist
# Check if pair quote currency equals to the stake currency.
_pairlist = [
k
for k in self._exchange.get_markets(
quote_currencies=[self._stake_currency], tradable_only=True, active_only=True
).keys()
]
# No point in testing for blacklisted pairs...
_pairlist = self.verify_blacklist(_pairlist, logger.info)
if not self._use_range:
filtered_tickers = [
v
for k, v in tickers.items()
if (
self._exchange.get_pair_quote_currency(k) == self._stake_currency
2024-07-27 14:04:51 +00:00
and (self._use_range or v.get("percentage") is not None)
and v["symbol"] in _pairlist
)
]
pairlist = [s["symbol"] for s in filtered_tickers]
else:
pairlist = _pairlist
pairlist = self.filter_pairlist(pairlist, tickers)
self._pair_cache["pairlist"] = pairlist.copy()
return pairlist
def filter_pairlist(self, pairlist: list[str], tickers: dict) -> list[str]:
"""
Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers). May be cached.
:return: new whitelist
"""
filtered_tickers: list[dict[str, Any]] = [{"symbol": k} for k in pairlist]
if self._use_range:
# calculating using lookback_period
self.fetch_percent_change_from_lookback_period(filtered_tickers)
else:
# Fetching 24h change by default from supported exchange tickers
self.fetch_percent_change_from_tickers(filtered_tickers, tickers)
2024-07-27 14:07:51 +00:00
if self._min_value is not None:
filtered_tickers = [v for v in filtered_tickers if v["percentage"] > self._min_value]
if self._max_value is not None:
2024-07-27 14:04:51 +00:00
filtered_tickers = [v for v in filtered_tickers if v["percentage"] < self._max_value]
sorted_tickers = sorted(
filtered_tickers,
reverse=self._sort_direction == "desc",
2024-07-27 14:04:51 +00:00
key=lambda t: t["percentage"],
)
# Validate whitelist to only have active market pairs
pairs = self._whitelist_for_active_markets([s["symbol"] for s in sorted_tickers])
pairs = self.verify_blacklist(pairs, logmethod=logger.info)
# Limit pairlist to the requested number of pairs
pairs = pairs[: self._number_pairs]
return pairs
2024-07-27 14:13:17 +00:00
def fetch_candles_for_lookback_period(
self, filtered_tickers: list[dict[str, str]]
) -> dict[PairWithTimeframe, DataFrame]:
since_ms = (
int(
timeframe_to_prev_date(
self._lookback_timeframe,
dt_now()
+ timedelta(
minutes=-(self._lookback_period * self._tf_in_min) - self._tf_in_min
),
).timestamp()
)
* 1000
)
to_ms = (
int(
timeframe_to_prev_date(
self._lookback_timeframe, dt_now() - timedelta(minutes=self._tf_in_min)
).timestamp()
)
* 1000
)
# todo: utc date output for starting date
self.log_once(
f"Using change range of {self._lookback_period} candles, timeframe: "
f"{self._lookback_timeframe}, starting from {format_ms_time(since_ms)} "
f"till {format_ms_time(to_ms)}",
logger.info,
)
needed_pairs: ListPairsWithTimeframes = [
(p, self._lookback_timeframe, self._def_candletype)
for p in [s["symbol"] for s in filtered_tickers]
if p not in self._pair_cache
]
candles = self._exchange.refresh_ohlcv_with_cache(needed_pairs, since_ms)
return candles
def fetch_percent_change_from_lookback_period(self, filtered_tickers: list[dict[str, Any]]):
# get lookback period in ms, for exchange ohlcv fetch
candles = self.fetch_candles_for_lookback_period(filtered_tickers)
for i, p in enumerate(filtered_tickers):
pair_candles = (
candles[(p["symbol"], self._lookback_timeframe, self._def_candletype)]
if (p["symbol"], self._lookback_timeframe, self._def_candletype) in candles
else None
)
# in case of candle data calculate typical price and change for candle
if pair_candles is not None and not pair_candles.empty:
current_close = pair_candles["close"].iloc[-1]
previous_close = pair_candles["close"].shift(self._lookback_period).iloc[-1]
pct_change = (
((current_close - previous_close) / previous_close) if previous_close > 0 else 0
)
# replace change with a range change sum calculated above
filtered_tickers[i]["percentage"] = pct_change
else:
filtered_tickers[i]["percentage"] = 0
def fetch_percent_change_from_tickers(self, filtered_tickers: list[dict[str, Any]], tickers):
for i, p in enumerate(filtered_tickers):
# Filter out assets
if not self._validate_pair(
p["symbol"], tickers[p["symbol"]] if p["symbol"] in tickers else None
):
filtered_tickers.remove(p)
else:
filtered_tickers[i]["percentage"] = tickers[p["symbol"]]["percentage"]
def _validate_pair(self, pair: str, ticker: Optional[Ticker]) -> bool:
"""
Check if one price-step (pip) is > than a certain barrier.
:param pair: Pair that's currently validated
:param ticker: ticker dict as returned from ccxt.fetch_ticker
:return: True if the pair can stay, false if it should be removed
"""
if not ticker or "percentage" not in ticker or ticker["percentage"] is None:
self.log_once(
f"Removed {pair} from whitelist, because "
"ticker['percentage'] is empty (Usually no trade in the last 24h).",
logger.info,
)
return False
return True