freqtrade_origin/freqtrade/tests/optimize/test_backtest_detail.py

227 lines
7.9 KiB
Python
Raw Normal View History

2018-07-09 19:38:49 +00:00
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import logging
from unittest.mock import MagicMock
2018-10-29 19:17:15 +00:00
from typing import NamedTuple, List
2018-07-09 19:38:49 +00:00
from pandas import DataFrame
2018-07-09 19:38:49 +00:00
import pytest
2018-10-29 19:17:15 +00:00
import arrow
2018-07-09 19:38:49 +00:00
2018-07-09 19:38:49 +00:00
from freqtrade.optimize.backtesting import Backtesting
from freqtrade.strategy.interface import SellType
2018-07-09 19:38:49 +00:00
from freqtrade.tests.conftest import patch_exchange, log_has
2018-10-29 19:17:15 +00:00
ticker_start_time = arrow.get(2018, 10, 3)
ticker_interval_in_minute = 60
class BTrade(NamedTuple):
sell_r: SellType
open_tick: int
close_tick: int
class BTContainer(NamedTuple):
"""
NamedTuple Defining BacktestResults inputs.
"""
2018-10-29 19:17:15 +00:00
data: List[float]
stop_loss: float
roi: float
trades: List[BTrade]
profit_perc: float
def _get_frame_time(offset):
return ticker_start_time.shift(
minutes=(offset * ticker_interval_in_minute)).datetime
2018-10-29 19:17:15 +00:00
def _build_dataframe(ticker_with_signals):
columns = ['date', 'open', 'high', 'low', 'close', 'volume', 'buy', 'sell']
frame = DataFrame.from_records(ticker_with_signals, columns=columns)
frame['date'] = frame['date'].apply(_get_frame_time)
2018-10-29 19:17:15 +00:00
# Ensure floats are in place
for column in ['open', 'high', 'low', 'close', 'volume']:
frame[column] = frame[column].astype('float64')
return frame
# Test 1 Minus 8% Close
# Candle Data for test 1 close at -8% (9200)
# Test with Stop-loss at 1%
# TC1: Stop-Loss Triggered 1% loss
tc0 = BTContainer(data=[
2018-10-29 19:17:15 +00:00
[0, 10000.0, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle)
[2, 9975, 10025, 9200, 9200, 12345, 0, 0], # Exit with stoploss hit
2018-10-29 19:17:15 +00:00
[3, 9950, 10000, 9960, 9955, 12345, 0, 0],
[4, 9955, 9975, 9955, 9990, 12345, 0, 0],
[5, 9990, 9990, 9990, 9900, 12345, 0, 0]],
stop_loss=-0.01, roi=1, profit_perc=-0.01,
trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
)
# Test 2 Minus 4% Low, minus 1% close
# Candle Data for test 2
# Test with Stop-Loss at 3%
# TC2: Stop-Loss Triggered 3% Loss
tc1 = BTContainer(data=[
2018-10-29 19:17:15 +00:00
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle)
2018-10-29 19:17:15 +00:00
[2, 9975, 10025, 9925, 9950, 12345, 0, 0],
[3, 9950, 10000, 9600, 9925, 12345, 0, 0], # Exit with stoploss hit
2018-10-29 19:17:15 +00:00
[4, 9925, 9975, 9875, 9900, 12345, 0, 0],
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.03, roi=1, profit_perc=-0.03,
trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=3)]
)
# Test 3 Candle drops 4%, Recovers 1%.
# Entry Criteria Met
# Candle drops 20%
# Candle Data for test 3
# Test with Stop-Loss at 2%
# TC3: Trade-A: Stop-Loss Triggered 2% Loss
# Trade-B: Stop-Loss Triggered 2% Loss
tc2 = BTContainer(data=[
2018-10-29 19:17:15 +00:00
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle)
2018-10-29 19:17:15 +00:00
[2, 9975, 10025, 9600, 9950, 12345, 0, 0],
[3, 9950, 10000, 9900, 9925, 12345, 1, 0],
[4, 9950, 10000, 9900, 9925, 12345, 0, 0], # enter trade 2 (signal on last candle)
2018-10-29 19:17:15 +00:00
[5, 9925, 9975, 8000, 8000, 12345, 0, 0],
[6, 9900, 9950, 9950, 9900, 12345, 0, 0]],
stop_loss=-0.02, roi=1, profit_perc=-0.04,
trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=2),
BTrade(sell_r=SellType.STOP_LOSS, open_tick=4, close_tick=5)]
)
# Test 4 Minus 3% / recovery +15%
# Candle Data for test 4 Candle drops 3% Closed 15% up
# Test with Stop-loss at 2% ROI 6%
# TC4: Stop-Loss Triggered 2% Loss
tc3 = BTContainer(data=[
2018-10-29 19:17:15 +00:00
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle)
2018-10-29 19:17:15 +00:00
[2, 9975, 11500, 9700, 11500, 12345, 0, 0],
[3, 9950, 10000, 9900, 9925, 12345, 0, 0],
[4, 9925, 9975, 9875, 9900, 12345, 0, 0], # Exit with stoploss hit
2018-10-29 19:17:15 +00:00
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.02, roi=0.06, profit_perc=-0.02,
trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
)
# Test 5 / Drops 0.5% Closes +20%
# Candle Data for test 5
# Set stop-loss at 1% ROI 3%
# TC5: ROI triggers 3% Gain
tc4 = BTContainer(data=[
2018-10-29 19:17:15 +00:00
[0, 10000, 10050, 9960, 9975, 12345, 1, 0],
[1, 10000, 10050, 9960, 9975, 12345, 0, 0], # enter trade (signal on last candle)
2018-10-29 19:17:15 +00:00
[2, 9975, 10050, 9950, 9975, 12345, 0, 0],
[3, 9950, 12000, 9950, 12000, 12345, 0, 0], # ROI
2018-10-29 19:17:15 +00:00
[4, 9925, 9975, 9945, 9900, 12345, 0, 0],
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.01, roi=0.03, profit_perc=0.03,
trades=[BTrade(sell_r=SellType.ROI, open_tick=1, close_tick=3)]
)
# Test 6 / Drops 3% / Recovers 6% Positive / Closes 1% positve
# Candle Data for test 6
# Set stop-loss at 2% ROI at 5%
# TC6: Stop-Loss triggers 2% Loss
tc5 = BTContainer(data=[
2018-10-29 19:17:15 +00:00
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle)
[2, 9975, 10600, 9700, 10100, 12345, 0, 0], # Exit with stoploss
2018-10-29 19:17:15 +00:00
[3, 9950, 10000, 9900, 9925, 12345, 0, 0],
[4, 9925, 9975, 9945, 9900, 12345, 0, 0],
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.02, roi=0.05, profit_perc=-0.02,
trades=[BTrade(sell_r=SellType.STOP_LOSS, open_tick=1, close_tick=2)]
)
# Test 7 - 6% Positive / 1% Negative / Close 1% Positve
# Candle Data for test 7
# Set stop-loss at 2% ROI at 3%
# TC7: ROI Triggers 3% Gain
tc6 = BTContainer(data=[
2018-10-29 19:17:15 +00:00
[0, 10000, 10050, 9950, 9975, 12345, 1, 0],
[1, 10000, 10050, 9950, 9975, 12345, 0, 0], # enter trade (signal on last candle)
[2, 9975, 10600, 9900, 10100, 12345, 0, 0], # ROI
2018-10-29 19:17:15 +00:00
[3, 9950, 10000, 9900, 9925, 12345, 0, 0],
[4, 9925, 9975, 9945, 9900, 12345, 0, 0],
[5, 9900, 9950, 9850, 9900, 12345, 0, 0]],
stop_loss=-0.02, roi=0.03, profit_perc=0.03,
trades=[BTrade(sell_r=SellType.ROI, open_tick=1, close_tick=2)]
)
TESTS = [
# tc_profit1,
# tc_profit2,
# tc_loss0,
tc0,
tc1,
tc2,
tc3,
tc4,
tc5,
tc6,
]
@pytest.mark.parametrize("data", TESTS)
def test_backtest_results(default_conf, fee, mocker, caplog, data) -> None:
2018-07-09 19:38:49 +00:00
"""
run functional tests
"""
default_conf["stoploss"] = data.stop_loss
default_conf["minimal_roi"] = {"0": data.roi}
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
# TODO: don't Mock fee to for now
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.0))
2018-07-09 19:38:49 +00:00
patch_exchange(mocker)
2018-10-29 19:17:15 +00:00
frame = _build_dataframe(data.data)
2018-07-09 19:38:49 +00:00
backtesting = Backtesting(default_conf)
2018-10-29 19:17:15 +00:00
backtesting.advise_buy = lambda a, m: frame
backtesting.advise_sell = lambda a, m: frame
2018-07-09 19:38:49 +00:00
caplog.set_level(logging.DEBUG)
pair = 'UNITTEST/BTC'
# Dummy data as we mock the analyze functions
data_processed = {pair: DataFrame()}
2018-07-09 19:38:49 +00:00
results = backtesting.backtest(
{
'stake_amount': default_conf['stake_amount'],
'processed': data_processed,
'max_open_trades': 10,
}
)
print(results.T)
assert len(results) == len(data.trades)
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
# if data.sell_r == SellType.STOP_LOSS:
# assert log_has("Stop loss hit.", caplog.record_tuples)
# else:
# assert not log_has("Stop loss hit.", caplog.record_tuples)
# log_test = (f'Force_selling still open trade UNITTEST/BTC with '
# f'{results.iloc[-1].profit_percent} perc - {results.iloc[-1].profit_abs}')
# if data.sell_r == SellType.FORCE_SELL:
# assert log_has(log_test,
# caplog.record_tuples)
# else:
# assert not log_has(log_test,
# caplog.record_tuples)
for c, trade in enumerate(data.trades):
res = results.iloc[c]
assert res.sell_reason == trade.sell_r
assert res.open_time == _get_frame_time(trade.open_tick)
assert res.close_time == _get_frame_time(trade.close_tick)