2021-09-22 01:04:23 +00:00
|
|
|
"""
|
|
|
|
CalmarHyperOptLoss
|
|
|
|
|
|
|
|
This module defines the alternative HyperOptLoss class which can be used for
|
|
|
|
Hyperoptimization.
|
|
|
|
"""
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from freqtrade.data.btanalysis import calculate_max_drawdown
|
2021-09-22 14:18:17 +00:00
|
|
|
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
|
|
|
from pandas import DataFrame
|
2021-09-22 01:04:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
class CalmarHyperOptLoss(IHyperOptLoss):
|
|
|
|
"""
|
|
|
|
Defines the loss function for hyperopt.
|
|
|
|
|
|
|
|
This implementation uses the Calmar Ratio calculation.
|
|
|
|
"""
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
|
|
|
min_date: datetime, max_date: datetime,
|
|
|
|
*args, **kwargs) -> float:
|
|
|
|
"""
|
|
|
|
Objective function, returns smaller number for more optimal results.
|
|
|
|
|
|
|
|
Uses Calmar Ratio calculation.
|
|
|
|
"""
|
|
|
|
total_profit = results["profit_ratio"]
|
|
|
|
days_period = (max_date - min_date).days
|
|
|
|
|
|
|
|
# adding slippage of 0.1% per trade
|
|
|
|
total_profit = total_profit - 0.0005
|
|
|
|
expected_returns_mean = total_profit.sum() / days_period
|
|
|
|
|
|
|
|
# calculate max drawdown
|
|
|
|
try:
|
2021-09-22 14:18:17 +00:00
|
|
|
_,_,_,high_val,low_val = calculate_max_drawdown(results)
|
2021-09-22 01:25:17 +00:00
|
|
|
max_drawdown = (high_val - low_val) / high_val
|
2021-09-22 01:04:23 +00:00
|
|
|
except ValueError:
|
|
|
|
max_drawdown = 0
|
|
|
|
|
2021-09-22 14:18:17 +00:00
|
|
|
if max_drawdown != 0 and trade_count > 1000:
|
2021-09-22 01:04:23 +00:00
|
|
|
calmar_ratio = expected_returns_mean / max_drawdown * np.sqrt(365)
|
|
|
|
else:
|
|
|
|
calmar_ratio = -20.
|
|
|
|
|
|
|
|
return -calmar_ratio
|