freqtrade_origin/tests/freqai/test_freqai_interface.py

553 lines
23 KiB
Python
Raw Normal View History

2023-06-17 18:35:23 +00:00
import logging
import shutil
from pathlib import Path
from unittest.mock import MagicMock
import pytest
from freqtrade.configuration import TimeRange
from freqtrade.data.dataprovider import DataProvider
2022-10-05 12:08:03 +00:00
from freqtrade.enums import RunMode
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
2022-10-05 12:08:03 +00:00
from freqtrade.freqai.utils import download_all_data_for_training, get_required_data_timerange
2022-10-05 12:11:19 +00:00
from freqtrade.optimize.backtesting import Backtesting
2022-10-05 12:08:03 +00:00
from freqtrade.persistence import Trade
from freqtrade.plugins.pairlistmanager import PairListManager
from tests.conftest import EXMS, create_mock_trades, get_patched_exchange, log_has_re
2024-03-14 06:22:54 +00:00
from tests.freqai.conftest import (get_patched_freqai_strategy, is_arm, is_mac, make_rl_config,
mock_pytorch_mlp_model_training_parameters)
2022-08-08 18:15:18 +00:00
2023-02-25 14:25:47 +00:00
def can_run_model(model: str) -> None:
2024-01-14 14:29:09 +00:00
is_pytorch_model = 'Reinforcement' in model or 'PyTorch' in model
if is_arm() and "Catboost" in model:
pytest.skip("CatBoost is not supported on ARM.")
2023-02-25 14:25:47 +00:00
2024-03-12 06:30:06 +00:00
if is_pytorch_model and is_mac():
pytest.skip("Reinforcement learning / PyTorch module not available on intel based Mac OS.")
2023-02-25 14:25:47 +00:00
@pytest.mark.parametrize('model, pca, dbscan, float32, can_short, shuffle, buffer, noise', [
('LightGBMRegressor', True, False, True, True, False, 0, 0),
('XGBoostRegressor', False, True, False, True, False, 10, 0.05),
('XGBoostRFRegressor', False, False, False, True, False, 0, 0),
('CatboostRegressor', False, False, False, True, True, 0, 0),
('PyTorchMLPRegressor', False, False, False, False, False, 0, 0),
('PyTorchTransformerRegressor', False, False, False, False, False, 0, 0),
('ReinforcementLearner', False, True, False, True, False, 0, 0),
('ReinforcementLearner_multiproc', False, False, False, True, False, 0, 0),
('ReinforcementLearner_test_3ac', False, False, False, False, False, 0, 0),
('ReinforcementLearner_test_3ac', False, False, False, True, False, 0, 0),
('ReinforcementLearner_test_4ac', False, False, False, True, False, 0, 0),
2022-09-10 18:06:52 +00:00
])
2023-05-12 18:01:16 +00:00
def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model, pca,
dbscan, float32, can_short, shuffle,
buffer, noise):
2023-02-25 14:25:47 +00:00
can_run_model(model)
2023-05-12 18:01:16 +00:00
2023-05-14 16:05:49 +00:00
test_tb = True
if is_mac():
test_tb = False
2022-10-05 12:08:03 +00:00
model_save_ext = 'joblib'
2022-09-10 18:06:52 +00:00
freqai_conf.update({"freqaimodel": model})
freqai_conf.update({"timerange": "20180110-20180130"})
2022-09-10 18:06:52 +00:00
freqai_conf.update({"strategy": "freqai_test_strat"})
freqai_conf['freqai']['feature_parameters'].update({"principal_component_analysis": pca})
freqai_conf['freqai']['feature_parameters'].update({"use_DBSCAN_to_remove_outliers": dbscan})
2022-11-13 14:38:35 +00:00
freqai_conf.update({"reduce_df_footprint": float32})
2022-12-16 10:20:37 +00:00
freqai_conf['freqai']['feature_parameters'].update({"shuffle_after_split": shuffle})
freqai_conf['freqai']['feature_parameters'].update({"buffer_train_data_candles": buffer})
freqai_conf['freqai']['feature_parameters'].update({"noise_standard_deviation": noise})
2022-09-14 22:46:35 +00:00
if 'ReinforcementLearner' in model:
model_save_ext = 'zip'
freqai_conf = make_rl_config(freqai_conf)
# test the RL guardrails
freqai_conf['freqai']['feature_parameters'].update({"use_SVM_to_remove_outliers": True})
freqai_conf['freqai']['feature_parameters'].update({"DI_threshold": 2})
freqai_conf['freqai']['data_split_parameters'].update({'shuffle': True})
2022-09-14 22:46:35 +00:00
2022-12-16 19:31:44 +00:00
if 'test_3ac' in model or 'test_4ac' in model:
2022-09-22 21:42:33 +00:00
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
freqai_conf["freqai"]["rl_config"]["drop_ohlc_from_features"] = True
2022-09-22 21:42:33 +00:00
if 'PyTorch' in model:
2023-03-20 16:04:14 +00:00
model_save_ext = 'zip'
pytorch_mlp_mtp = mock_pytorch_mlp_model_training_parameters()
freqai_conf['freqai']['model_training_parameters'].update(pytorch_mlp_mtp)
if 'Transformer' in model:
# transformer model takes a window, unlike the MLP regressor
freqai_conf.update({"conv_width": 10})
2023-03-20 16:04:14 +00:00
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
2022-07-23 14:05:25 +00:00
freqai = strategy.freqai
freqai.live = True
2023-05-14 16:05:49 +00:00
freqai.activate_tensorboard = test_tb
2022-12-19 10:49:31 +00:00
freqai.can_short = can_short
freqai.dk = FreqaiDataKitchen(freqai_conf)
2023-03-26 17:22:52 +00:00
freqai.dk.live = True
freqai.dk.set_paths('ADA/BTC', 10000)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
2022-10-05 12:08:03 +00:00
data_load_timerange = TimeRange.parse_timerange("20180125-20180130")
new_timerange = TimeRange.parse_timerange("20180127-20180130")
2022-10-15 06:48:41 +00:00
freqai.dk.set_paths('ADA/BTC', None)
2022-10-11 17:24:47 +00:00
freqai.train_timer("start", "ADA/BTC")
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
2022-10-11 17:24:47 +00:00
freqai.train_timer("stop", "ADA/BTC")
freqai.dd.save_metric_tracker_to_disk()
freqai.dd.save_drawer_to_disk()
2022-10-11 17:24:47 +00:00
assert Path(freqai.dk.full_path / "metric_tracker.json").is_file()
assert Path(freqai.dk.full_path / "pair_dictionary.json").is_file()
2022-10-05 12:08:03 +00:00
assert Path(freqai.dk.data_path /
f"{freqai.dk.model_filename}_model.{model_save_ext}").is_file()
2022-07-25 08:48:04 +00:00
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
shutil.rmtree(Path(freqai.dk.full_path))
2022-10-30 17:08:10 +00:00
@pytest.mark.parametrize('model, strat', [
('LightGBMRegressorMultiTarget', "freqai_test_multimodel_strat"),
('XGBoostRegressorMultiTarget', "freqai_test_multimodel_strat"),
('CatboostRegressorMultiTarget', "freqai_test_multimodel_strat"),
('LightGBMClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"),
2022-10-30 17:08:10 +00:00
('CatboostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat")
])
2022-10-30 17:08:10 +00:00
def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model, strat):
can_run_model(model)
freqai_conf.update({"timerange": "20180110-20180130"})
2022-10-30 17:08:10 +00:00
freqai_conf.update({"strategy": strat})
freqai_conf.update({"freqaimodel": model})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
2023-03-26 17:22:52 +00:00
freqai.dk.live = True
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
2022-10-15 06:48:41 +00:00
freqai.dk.set_paths('ADA/BTC', None)
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
assert len(freqai.dk.label_list) == 2
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_model.joblib").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").is_file()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").is_file()
2022-10-05 12:08:03 +00:00
assert len(freqai.dk.data['training_features_list']) == 14
shutil.rmtree(Path(freqai.dk.full_path))
2022-09-10 18:17:57 +00:00
@pytest.mark.parametrize('model', [
'LightGBMClassifier',
'CatboostClassifier',
'XGBoostClassifier',
'XGBoostRFClassifier',
'SKLearnRandomForestClassifier',
2023-03-20 16:04:02 +00:00
'PyTorchMLPClassifier',
2022-09-10 18:17:57 +00:00
])
def test_extract_data_and_train_model_Classifiers(mocker, freqai_conf, model):
can_run_model(model)
2022-09-10 18:17:57 +00:00
freqai_conf.update({"freqaimodel": model})
freqai_conf.update({"strategy": "freqai_test_classifier"})
freqai_conf.update({"timerange": "20180110-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
2023-03-26 17:22:52 +00:00
freqai.dk.live = True
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = MagicMock()
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
2022-10-15 06:48:41 +00:00
freqai.dk.set_paths('ADA/BTC', None)
freqai.extract_data_and_train_model(new_timerange, "ADA/BTC",
strategy, freqai.dk, data_load_timerange)
2023-03-20 16:10:17 +00:00
if 'PyTorchMLPClassifier':
pytorch_mlp_mtp = mock_pytorch_mlp_model_training_parameters()
freqai_conf['freqai']['model_training_parameters'].update(pytorch_mlp_mtp)
2023-03-20 16:08:38 +00:00
if freqai.dd.model_type == 'joblib':
model_file_extension = ".joblib"
elif freqai.dd.model_type == "pytorch":
model_file_extension = ".zip"
else:
raise Exception(f"Unsupported model type: {freqai.dd.model_type},"
f" can't assign model_file_extension")
assert Path(freqai.dk.data_path /
f"{freqai.dk.model_filename}_model{model_file_extension}").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_metadata.json").exists()
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}_trained_df.pkl").exists()
shutil.rmtree(Path(freqai.dk.full_path))
2022-10-05 12:08:03 +00:00
@pytest.mark.parametrize(
"model, num_files, strat",
[
("LightGBMRegressor", 2, "freqai_test_strat"),
("XGBoostRegressor", 2, "freqai_test_strat"),
("CatboostRegressor", 2, "freqai_test_strat"),
("PyTorchMLPRegressor", 2, "freqai_test_strat"),
("PyTorchTransformerRegressor", 2, "freqai_test_strat"),
2023-05-14 16:18:33 +00:00
("ReinforcementLearner", 3, "freqai_rl_test_strat"),
("XGBoostClassifier", 2, "freqai_test_classifier"),
("LightGBMClassifier", 2, "freqai_test_classifier"),
("CatboostClassifier", 2, "freqai_test_classifier"),
("PyTorchMLPClassifier", 2, "freqai_test_classifier")
2022-10-05 12:08:03 +00:00
],
)
2022-10-08 14:15:48 +00:00
def test_start_backtesting(mocker, freqai_conf, model, num_files, strat, caplog):
2023-02-25 14:25:47 +00:00
can_run_model(model)
2023-05-14 16:05:49 +00:00
test_tb = True
2024-03-09 18:44:40 +00:00
if is_mac() and not is_arm():
2023-05-14 16:05:49 +00:00
test_tb = False
2023-02-25 14:25:47 +00:00
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
2022-10-05 12:08:03 +00:00
freqai_conf['runmode'] = RunMode.BACKTEST
2022-10-07 05:05:56 +00:00
Trade.use_db = False
2022-09-23 08:30:52 +00:00
2022-10-05 12:08:03 +00:00
freqai_conf.update({"freqaimodel": model})
freqai_conf.update({"timerange": "20180120-20180130"})
freqai_conf.update({"strategy": strat})
2022-09-23 08:30:52 +00:00
if 'ReinforcementLearner' in model:
freqai_conf = make_rl_config(freqai_conf)
2022-09-23 08:30:52 +00:00
if 'test_4ac' in model:
freqai_conf["freqaimodel_path"] = str(Path(__file__).parents[1] / "freqai" / "test_models")
if 'PyTorch' in model:
pytorch_mlp_mtp = mock_pytorch_mlp_model_training_parameters()
freqai_conf['freqai']['model_training_parameters'].update(pytorch_mlp_mtp)
if 'Transformer' in model:
# transformer model takes a window, unlike the MLP regressor
freqai_conf.update({"conv_width": 10})
2023-01-05 20:54:56 +00:00
freqai_conf.get("freqai", {}).get("feature_parameters", {}).update(
{"indicator_periods_candles": [2]})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
2022-07-23 14:05:25 +00:00
freqai = strategy.freqai
freqai.live = False
2023-05-14 16:05:49 +00:00
freqai.activate_tensorboard = test_tb
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180110-20180130")
2022-12-29 19:35:11 +00:00
_, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = base_df[freqai_conf["timeframe"]]
metadata = {"pair": "LTC/BTC"}
freqai.dk.set_paths('LTC/BTC', None)
2022-12-29 19:35:11 +00:00
freqai.start_backtesting(df, metadata, freqai.dk, strategy)
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
2022-10-05 12:08:03 +00:00
assert len(model_folders) == num_files
2022-10-05 15:06:18 +00:00
Trade.use_db = True
2022-10-05 12:08:03 +00:00
Backtesting.cleanup()
shutil.rmtree(Path(freqai.dk.full_path))
def test_start_backtesting_subdaily_backtest_period(mocker, freqai_conf):
freqai_conf.update({"timerange": "20180120-20180124"})
freqai_conf['runmode'] = 'backtest'
freqai_conf.get("freqai", {}).update({
"backtest_period_days": 0.5,
"save_backtest_models": True,
})
2023-01-05 20:54:56 +00:00
freqai_conf.get("freqai", {}).get("feature_parameters", {}).update(
{"indicator_periods_candles": [2]})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = False
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180110-20180130")
2022-12-29 19:35:11 +00:00
_, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = base_df[freqai_conf["timeframe"]]
metadata = {"pair": "LTC/BTC"}
2022-12-29 19:35:11 +00:00
freqai.start_backtesting(df, metadata, freqai.dk, strategy)
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
2022-10-23 18:25:39 +00:00
assert len(model_folders) == 9
shutil.rmtree(Path(freqai.dk.full_path))
def test_start_backtesting_from_existing_folder(mocker, freqai_conf, caplog):
freqai_conf.update({"timerange": "20180120-20180130"})
freqai_conf['runmode'] = 'backtest'
freqai_conf.get("freqai", {}).update({"save_backtest_models": True})
2023-01-05 20:54:56 +00:00
freqai_conf.get("freqai", {}).get("feature_parameters", {}).update(
{"indicator_periods_candles": [2]})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
2022-07-23 14:05:25 +00:00
freqai = strategy.freqai
freqai.live = False
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
2023-01-05 20:54:56 +00:00
sub_timerange = TimeRange.parse_timerange("20180101-20180130")
2022-12-29 19:35:11 +00:00
_, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = base_df[freqai_conf["timeframe"]]
pair = "ADA/BTC"
metadata = {"pair": pair}
freqai.dk.pair = pair
2022-12-29 19:35:11 +00:00
freqai.start_backtesting(df, metadata, freqai.dk, strategy)
model_folders = [x for x in freqai.dd.full_path.iterdir() if x.is_dir()]
assert len(model_folders) == 2
2022-10-05 12:08:03 +00:00
# without deleting the existing folder structure, re-run
freqai_conf.update({"timerange": "20180120-20180130"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
2022-07-23 14:05:25 +00:00
freqai = strategy.freqai
freqai.live = False
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180110-20180130")
2022-12-29 19:35:11 +00:00
_, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = base_df[freqai_conf["timeframe"]]
2022-10-08 14:15:48 +00:00
pair = "ADA/BTC"
metadata = {"pair": pair}
freqai.dk.pair = pair
2022-12-29 19:35:11 +00:00
freqai.start_backtesting(df, metadata, freqai.dk, strategy)
assert log_has_re(
"Found backtesting prediction file ",
caplog,
)
pair = "ETH/BTC"
metadata = {"pair": pair}
freqai.dk.pair = pair
2022-12-29 19:35:11 +00:00
freqai.start_backtesting(df, metadata, freqai.dk, strategy)
path = (freqai.dd.full_path / freqai.dk.backtest_predictions_folder)
prediction_files = [x for x in path.iterdir() if x.is_file()]
assert len(prediction_files) == 2
shutil.rmtree(Path(freqai.dk.full_path))
2022-07-25 08:48:04 +00:00
def test_backtesting_fit_live_predictions(mocker, freqai_conf, caplog):
freqai_conf['runmode'] = 'backtest'
freqai_conf.get("freqai", {}).update({"fit_live_predictions_candles": 10})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = False
freqai.dk = FreqaiDataKitchen(freqai_conf)
timerange = TimeRange.parse_timerange("20180128-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
sub_timerange = TimeRange.parse_timerange("20180129-20180130")
corr_df, base_df = freqai.dd.get_base_and_corr_dataframes(sub_timerange, "LTC/BTC", freqai.dk)
df = freqai.dk.use_strategy_to_populate_indicators(strategy, corr_df, base_df, "LTC/BTC")
df = strategy.set_freqai_targets(df.copy(), metadata={"pair": "LTC/BTC"})
df = freqai.dk.remove_special_chars_from_feature_names(df)
freqai.dk.get_unique_classes_from_labels(df)
freqai.dk.pair = "ADA/BTC"
freqai.dk.full_df = df.fillna(0)
2024-04-20 07:39:43 +00:00
assert "&-s_close_mean" not in freqai.dk.full_df.columns
assert "&-s_close_std" not in freqai.dk.full_df.columns
freqai.backtesting_fit_live_predictions(freqai.dk)
assert "&-s_close_mean" in freqai.dk.full_df.columns
assert "&-s_close_std" in freqai.dk.full_df.columns
shutil.rmtree(Path(freqai.dk.full_path))
def test_plot_feature_importance(mocker, freqai_conf):
from freqtrade.freqai.utils import plot_feature_importance
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.get("freqai", {}).get("feature_parameters", {}).update(
{"princpial_component_analysis": "true"})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = True
freqai.dk = FreqaiDataKitchen(freqai_conf)
freqai.dk.live = True
timerange = TimeRange.parse_timerange("20180110-20180130")
freqai.dd.load_all_pair_histories(timerange, freqai.dk)
freqai.dd.pair_dict = {"ADA/BTC": {"model_filename": "fake_name",
"trained_timestamp": 1, "data_path": "", "extras": {}}}
data_load_timerange = TimeRange.parse_timerange("20180110-20180130")
new_timerange = TimeRange.parse_timerange("20180120-20180130")
freqai.dk.set_paths('ADA/BTC', None)
freqai.extract_data_and_train_model(
new_timerange, "ADA/BTC", strategy, freqai.dk, data_load_timerange)
model = freqai.dd.load_data("ADA/BTC", freqai.dk)
plot_feature_importance(model, "ADA/BTC", freqai.dk)
assert Path(freqai.dk.data_path / f"{freqai.dk.model_filename}.html")
shutil.rmtree(Path(freqai.dk.full_path))
@pytest.mark.parametrize('timeframes,corr_pairs', [
(['5m'], ['ADA/BTC', 'DASH/BTC']),
2022-09-17 12:19:20 +00:00
(['5m'], ['ADA/BTC', 'DASH/BTC', 'ETH/USDT']),
(['5m', '15m'], ['ADA/BTC', 'DASH/BTC', 'ETH/USDT']),
])
def test_freqai_informative_pairs(mocker, freqai_conf, timeframes, corr_pairs):
freqai_conf['freqai']['feature_parameters'].update({
'include_timeframes': timeframes,
'include_corr_pairlist': corr_pairs,
})
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
pairlists = PairListManager(exchange, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange, pairlists)
pairlist = strategy.dp.current_whitelist()
pairs_a = strategy.informative_pairs()
assert len(pairs_a) == 0
pairs_b = strategy.gather_informative_pairs()
# we expect unique pairs * timeframes
assert len(pairs_b) == len(set(pairlist + corr_pairs)) * len(timeframes)
2022-10-05 12:08:03 +00:00
def test_start_set_train_queue(mocker, freqai_conf, caplog):
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
pairlist = PairListManager(exchange, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange, pairlist)
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.live = False
freqai.train_queue = freqai._set_train_queue()
assert log_has_re(
"Set fresh train queue from whitelist.",
caplog,
)
def test_get_required_data_timerange(mocker, freqai_conf):
time_range = get_required_data_timerange(freqai_conf)
assert (time_range.stopts - time_range.startts) == 177300
2023-11-05 15:23:22 +00:00
def test_download_all_data_for_training(mocker, freqai_conf, caplog, tmp_path):
2023-06-17 18:35:23 +00:00
caplog.set_level(logging.DEBUG)
2022-10-05 12:08:03 +00:00
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
pairlist = PairListManager(exchange, freqai_conf)
strategy.dp = DataProvider(freqai_conf, exchange, pairlist)
freqai_conf['pairs'] = freqai_conf['exchange']['pair_whitelist']
2023-11-05 15:23:22 +00:00
freqai_conf['datadir'] = tmp_path
2022-10-05 12:08:03 +00:00
download_all_data_for_training(strategy.dp, freqai_conf)
assert log_has_re(
"Downloading",
caplog,
)
@pytest.mark.usefixtures("init_persistence")
@pytest.mark.parametrize('dp_exists', [(False), (True)])
def test_get_state_info(mocker, freqai_conf, dp_exists, caplog, tickers):
if is_mac():
pytest.skip("Reinforcement learning module not available on intel based Mac OS")
freqai_conf.update({"freqaimodel": "ReinforcementLearner"})
freqai_conf.update({"timerange": "20180110-20180130"})
freqai_conf.update({"strategy": "freqai_rl_test_strat"})
freqai_conf = make_rl_config(freqai_conf)
freqai_conf['entry_pricing']['price_side'] = 'same'
freqai_conf['exit_pricing']['price_side'] = 'same'
strategy = get_patched_freqai_strategy(mocker, freqai_conf)
exchange = get_patched_exchange(mocker, freqai_conf)
ticker_mock = MagicMock(return_value=tickers()['ETH/BTC'])
mocker.patch(f"{EXMS}.fetch_ticker", ticker_mock)
strategy.dp = DataProvider(freqai_conf, exchange)
if not dp_exists:
strategy.dp._exchange = None
strategy.freqai_info = freqai_conf.get("freqai", {})
freqai = strategy.freqai
freqai.data_provider = strategy.dp
freqai.live = True
Trade.use_db = True
create_mock_trades(MagicMock(return_value=0.0025), False, True)
freqai.get_state_info("ADA/BTC")
freqai.get_state_info("ETH/BTC")
if not dp_exists:
assert log_has_re(
"No exchange available",
caplog,
)