mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
feat: add some freqAI parameter descriptions
This commit is contained in:
parent
edf66deb96
commit
06bbcf4c9f
|
@ -986,24 +986,98 @@ CONF_SCHEMA = {
|
|||
"feature_parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"include_corr_pairlist": {"type": "array"},
|
||||
"include_timeframes": {"type": "array"},
|
||||
"label_period_candles": {"type": "integer"},
|
||||
"include_shifted_candles": {"type": "integer", "default": 0},
|
||||
"DI_threshold": {"type": "number", "default": 0},
|
||||
"weight_factor": {"type": "number", "default": 0},
|
||||
"principal_component_analysis": {"type": "boolean", "default": False},
|
||||
"use_SVM_to_remove_outliers": {"type": "boolean", "default": False},
|
||||
"plot_feature_importances": {"type": "integer", "default": 0},
|
||||
"include_corr_pairlist": {
|
||||
"description": "List of correlated pairs to include in the features.",
|
||||
"type": "array",
|
||||
},
|
||||
"include_timeframes": {
|
||||
"description": (
|
||||
"A list of timeframes that all indicators in "
|
||||
"`feature_engineering_expand_*()` will be created for."
|
||||
),
|
||||
"type": "array",
|
||||
},
|
||||
"label_period_candles": {
|
||||
"description": (
|
||||
"Number of candles into the future to use for labeling the period."
|
||||
"This can be used in `set_freqai_targets()`."
|
||||
),
|
||||
"type": "integer",
|
||||
},
|
||||
"include_shifted_candles": {
|
||||
"description": (
|
||||
"Add features from previous candles to subsequent candles with "
|
||||
"the intent of adding historical information."
|
||||
),
|
||||
"type": "integer",
|
||||
"default": 0,
|
||||
},
|
||||
"DI_threshold": {
|
||||
"description": (
|
||||
"Activates the use of the Dissimilarity Index for "
|
||||
"outlier detection when set to > 0."
|
||||
),
|
||||
"type": "number",
|
||||
"default": 0,
|
||||
},
|
||||
"weight_factor": {
|
||||
"description": (
|
||||
"Weight training data points according to their recency."
|
||||
),
|
||||
"type": "number",
|
||||
"default": 0,
|
||||
},
|
||||
"principal_component_analysis": {
|
||||
"description": (
|
||||
"Automatically reduce the dimensionality of the data set using "
|
||||
"Principal Component Analysis"
|
||||
),
|
||||
"type": "boolean",
|
||||
"default": False,
|
||||
},
|
||||
"use_SVM_to_remove_outliers": {
|
||||
"description": "Use SVM to remove outliers from the features.",
|
||||
"type": "boolean",
|
||||
"default": False,
|
||||
},
|
||||
"plot_feature_importances": {
|
||||
"description": "Create feature importance plots for each model.",
|
||||
"type": "integer",
|
||||
"default": 0,
|
||||
},
|
||||
"svm_params": {
|
||||
"description": (
|
||||
"All parameters available in Sklearn's `SGDOneClassSVM()`."
|
||||
),
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"shuffle": {"type": "boolean", "default": False},
|
||||
"nu": {"type": "number", "default": 0.1},
|
||||
"shuffle": {
|
||||
"description": "Whether to shuffle data before applying SVM.",
|
||||
"type": "boolean",
|
||||
"default": False,
|
||||
},
|
||||
"nu": {
|
||||
"type": "number",
|
||||
"default": 0.1,
|
||||
},
|
||||
},
|
||||
},
|
||||
"shuffle_after_split": {"type": "boolean", "default": False},
|
||||
"buffer_train_data_candles": {"type": "integer", "default": 0},
|
||||
"shuffle_after_split": {
|
||||
"description": (
|
||||
"Split the data into train and test sets, and then shuffle "
|
||||
"both sets individually."
|
||||
),
|
||||
"type": "boolean",
|
||||
"default": False,
|
||||
},
|
||||
"buffer_train_data_candles": {
|
||||
"description": (
|
||||
"Cut `buffer_train_data_candles` off the beginning and end of the "
|
||||
"training data *after* the indicators were populated."
|
||||
),
|
||||
"type": "integer",
|
||||
"default": 0,
|
||||
},
|
||||
},
|
||||
"required": [
|
||||
"include_timeframes",
|
||||
|
@ -1011,6 +1085,9 @@ CONF_SCHEMA = {
|
|||
],
|
||||
},
|
||||
"data_split_parameters": {
|
||||
"descriptions": (
|
||||
"Additional parameters for scikit-learn's test_train_split() function."
|
||||
),
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"test_size": {"type": "number"},
|
||||
|
@ -1018,7 +1095,13 @@ CONF_SCHEMA = {
|
|||
"shuffle": {"type": "boolean", "default": False},
|
||||
},
|
||||
},
|
||||
"model_training_parameters": {"type": "object"},
|
||||
"model_training_parameters": {
|
||||
"description": (
|
||||
"Flexible dictionary that includes all parameters available by "
|
||||
"the selected model library. "
|
||||
),
|
||||
"type": "object",
|
||||
},
|
||||
"rl_config": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
|
|
Loading…
Reference in New Issue
Block a user