mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
first functional scanning commit
This commit is contained in:
parent
4d472a0ea1
commit
c5de0c49e4
|
@ -107,7 +107,7 @@ class FreqaiDataDrawer:
|
|||
if isinstance(object, np.generic):
|
||||
return object.item()
|
||||
|
||||
def get_pair_dict_info(self, metadata: dict) -> Tuple[str, int, bool, bool]:
|
||||
def get_pair_dict_info(self, pair: str) -> Tuple[str, int, bool, bool]:
|
||||
"""
|
||||
Locate and load existing model metadata from persistent storage. If not located,
|
||||
create a new one and append the current pair to it and prepare it for its first
|
||||
|
@ -120,22 +120,22 @@ class FreqaiDataDrawer:
|
|||
coin_first: bool = If the coin is fresh without metadata
|
||||
return_null_array: bool = Follower could not find pair metadata
|
||||
"""
|
||||
pair_in_dict = self.pair_dict.get(metadata['pair'])
|
||||
data_path_set = self.pair_dict.get(metadata['pair'], {}).get('data_path', None)
|
||||
pair_in_dict = self.pair_dict.get(pair)
|
||||
data_path_set = self.pair_dict.get(pair, {}).get('data_path', None)
|
||||
return_null_array = False
|
||||
|
||||
if pair_in_dict:
|
||||
model_filename = self.pair_dict[metadata['pair']]['model_filename']
|
||||
trained_timestamp = self.pair_dict[metadata['pair']]['trained_timestamp']
|
||||
coin_first = self.pair_dict[metadata['pair']]['first']
|
||||
model_filename = self.pair_dict[pair]['model_filename']
|
||||
trained_timestamp = self.pair_dict[pair]['trained_timestamp']
|
||||
coin_first = self.pair_dict[pair]['first']
|
||||
elif not self.follow_mode:
|
||||
self.pair_dict[metadata['pair']] = {}
|
||||
model_filename = self.pair_dict[metadata['pair']]['model_filename'] = ''
|
||||
coin_first = self.pair_dict[metadata['pair']]['first'] = True
|
||||
trained_timestamp = self.pair_dict[metadata['pair']]['trained_timestamp'] = 0
|
||||
self.pair_dict[pair] = {}
|
||||
model_filename = self.pair_dict[pair]['model_filename'] = ''
|
||||
coin_first = self.pair_dict[pair]['first'] = True
|
||||
trained_timestamp = self.pair_dict[pair]['trained_timestamp'] = 0
|
||||
|
||||
if not data_path_set and self.follow_mode:
|
||||
logger.warning(f'Follower could not find current pair {metadata["pair"]} in '
|
||||
logger.warning(f'Follower could not find current pair {pair} in '
|
||||
f'pair_dictionary at path {self.full_path}, sending null values '
|
||||
'back to strategy.')
|
||||
return_null_array = True
|
||||
|
|
|
@ -151,6 +151,9 @@ class FreqaiDataKitchen:
|
|||
:model: User trained model which can be inferenced for new predictions
|
||||
"""
|
||||
|
||||
if not self.data_drawer.pair_dict[coin]['model_filename']:
|
||||
return None
|
||||
|
||||
if self.live:
|
||||
self.model_filename = self.data_drawer.pair_dict[coin]['model_filename']
|
||||
self.data_path = Path(self.data_drawer.pair_dict[coin]['data_path'])
|
||||
|
@ -747,7 +750,7 @@ class FreqaiDataKitchen:
|
|||
logger.warning('FreqAI could not detect max timeframe and therefore may not '
|
||||
'download the proper amount of data for training')
|
||||
|
||||
logger.info(f'Extending data download by {additional_seconds/SECONDS_IN_DAY:.2f} days')
|
||||
# logger.info(f'Extending data download by {additional_seconds/SECONDS_IN_DAY:.2f} days')
|
||||
|
||||
if trained_timestamp != 0:
|
||||
elapsed_time = (time - trained_timestamp) / SECONDS_IN_DAY
|
||||
|
@ -937,7 +940,7 @@ class FreqaiDataKitchen:
|
|||
for tf in self.freqai_config.get('timeframes'):
|
||||
base_dataframes[tf] = self.slice_dataframe(
|
||||
timerange,
|
||||
historic_data[metadata['pair']][tf]
|
||||
historic_data[pair][tf]
|
||||
)
|
||||
if pairs:
|
||||
for p in pairs:
|
||||
|
|
|
@ -124,18 +124,19 @@ class IFreqaiModel(ABC):
|
|||
|
||||
file_exists = False
|
||||
|
||||
# dh.set_paths(pair, trained_timestamp)
|
||||
dh.set_paths(pair, trained_timestamp)
|
||||
file_exists = self.model_exists(pair,
|
||||
dh,
|
||||
trained_timestamp=trained_timestamp,
|
||||
model_filename=model_filename)
|
||||
model_filename=model_filename,
|
||||
scanning=True)
|
||||
|
||||
(self.retrain,
|
||||
(retrain,
|
||||
new_trained_timerange,
|
||||
data_load_timerange) = dh.check_if_new_training_required(trained_timestamp)
|
||||
dh.set_paths(pair, new_trained_timerange.stopts)
|
||||
|
||||
if self.retrain or not file_exists:
|
||||
if retrain or not file_exists:
|
||||
self.train_model_in_series(new_trained_timerange, pair,
|
||||
strategy, dh, data_load_timerange)
|
||||
|
||||
|
@ -226,7 +227,7 @@ class IFreqaiModel(ABC):
|
|||
# get the model metadata associated with the current pair
|
||||
(_,
|
||||
trained_timestamp,
|
||||
coin_first,
|
||||
_,
|
||||
return_null_array) = self.data_drawer.get_pair_dict_info(metadata['pair'])
|
||||
|
||||
# if the metadata doesnt exist, the follower returns null arrays to strategy
|
||||
|
@ -264,14 +265,18 @@ class IFreqaiModel(ABC):
|
|||
dh.download_all_data_for_training(data_load_timerange)
|
||||
dh.load_all_pair_histories(data_load_timerange)
|
||||
|
||||
# train the model on the trained timerange
|
||||
if coin_first and not self.scanning:
|
||||
self.train_model_in_series(new_trained_timerange, metadata['pair'],
|
||||
strategy, dh, data_load_timerange)
|
||||
elif not coin_first and not self.scanning:
|
||||
if not self.scanning:
|
||||
self.scanning = True
|
||||
self.start_scanning(strategy)
|
||||
|
||||
# train the model on the trained timerange
|
||||
# if coin_first and not self.scanning:
|
||||
# self.train_model_in_series(new_trained_timerange, metadata['pair'],
|
||||
# strategy, dh, data_load_timerange)
|
||||
# elif not coin_first and not self.scanning:
|
||||
# self.scanning = True
|
||||
# self.start_scanning(strategy)
|
||||
|
||||
# elif not trainable and not self.follow_mode:
|
||||
# logger.info(f'{metadata["pair"]} holds spot '
|
||||
# f'{self.data_drawer.pair_dict[metadata["pair"]]["priority"]} '
|
||||
|
@ -283,6 +288,10 @@ class IFreqaiModel(ABC):
|
|||
|
||||
# load the model and associated data into the data kitchen
|
||||
self.model = dh.load_data(coin=metadata['pair'])
|
||||
if not self.model:
|
||||
logger.warning('No model ready, returning null values to strategy.')
|
||||
self.data_drawer.return_null_values_to_strategy(dataframe, dh)
|
||||
return dh
|
||||
|
||||
# ensure user is feeding the correct indicators to the model
|
||||
self.check_if_feature_list_matches_strategy(dataframe, dh)
|
||||
|
@ -373,7 +382,7 @@ class IFreqaiModel(ABC):
|
|||
# dh.remove_outliers(predict=True) # creates dropped index
|
||||
|
||||
def model_exists(self, pair: str, dh: FreqaiDataKitchen, trained_timestamp: int = None,
|
||||
model_filename: str = '') -> bool:
|
||||
model_filename: str = '', scanning: bool = False) -> bool:
|
||||
"""
|
||||
Given a pair and path, check if a model already exists
|
||||
:param pair: pair e.g. BTC/USD
|
||||
|
@ -386,9 +395,9 @@ class IFreqaiModel(ABC):
|
|||
|
||||
path_to_modelfile = Path(dh.data_path / str(model_filename + "_model.joblib"))
|
||||
file_exists = path_to_modelfile.is_file()
|
||||
if file_exists:
|
||||
if file_exists and not scanning:
|
||||
logger.info("Found model at %s", dh.data_path / dh.model_filename)
|
||||
else:
|
||||
elif not scanning:
|
||||
logger.info("Could not find model at %s", dh.data_path / dh.model_filename)
|
||||
return file_exists
|
||||
|
||||
|
@ -453,8 +462,8 @@ class IFreqaiModel(ABC):
|
|||
with self.lock:
|
||||
self.data_drawer.pair_to_end_of_training_queue(pair)
|
||||
dh.save_data(model, coin=pair)
|
||||
self.training_on_separate_thread = False
|
||||
self.retrain = False
|
||||
# self.training_on_separate_thread = False
|
||||
# self.retrain = False
|
||||
|
||||
# each time we finish a training, we check the directory to purge old models.
|
||||
if self.freqai_info.get('purge_old_models', False):
|
||||
|
@ -499,7 +508,7 @@ class IFreqaiModel(ABC):
|
|||
with self.lock:
|
||||
self.data_drawer.pair_to_end_of_training_queue(pair)
|
||||
dh.save_data(model, coin=pair)
|
||||
self.retrain = False
|
||||
# self.retrain = False
|
||||
|
||||
# Following methods which are overridden by user made prediction models.
|
||||
# See freqai/prediction_models/CatboostPredictionModlel.py for an example.
|
||||
|
|
|
@ -48,7 +48,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
|||
return dataframe["s"]
|
||||
|
||||
def train(self, unfiltered_dataframe: DataFrame,
|
||||
metadata: dict, dh: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
|
||||
pair: str, dh: FreqaiDataKitchen) -> Tuple[DataFrame, DataFrame]:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datahkitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
|
@ -60,7 +60,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
|||
"""
|
||||
|
||||
logger.info('--------------------Starting training '
|
||||
f'{metadata["pair"]} --------------------')
|
||||
f'{pair} --------------------')
|
||||
|
||||
# create the full feature list based on user config info
|
||||
dh.training_features_list = dh.find_features(unfiltered_dataframe)
|
||||
|
@ -88,7 +88,7 @@ class CatboostPredictionModel(IFreqaiModel):
|
|||
|
||||
model = self.fit(data_dictionary)
|
||||
|
||||
logger.info(f'--------------------done training {metadata["pair"]}--------------------')
|
||||
logger.info(f'--------------------done training {pair}--------------------')
|
||||
|
||||
return model
|
||||
|
||||
|
|
|
@ -116,7 +116,6 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
informative[f"{coin}bb_upperband-period_{t}"]
|
||||
- informative[f"{coin}bb_lowerband-period_{t}"]
|
||||
) / informative[f"{coin}bb_middleband-period_{t}"]
|
||||
|
||||
informative[f"%-{coin}close-bb_lower-period_{t}"] = (
|
||||
informative["close"] / informative[f"{coin}bb_lowerband-period_{t}"]
|
||||
)
|
||||
|
@ -153,7 +152,7 @@ class FreqaiExampleStrategy(IStrategy):
|
|||
# Add generalized indicators here (because in live, it will call this
|
||||
# function to populate indicators during training). Notice how we ensure not to
|
||||
# add them multiple times
|
||||
if pair == metadata["pair"] and tf == self.timeframe:
|
||||
if pair == self.freqai_info['corr_pairlist'][0] and tf == self.timeframe:
|
||||
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
||||
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user