mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-14 12:13:57 +00:00
187 lines
7.6 KiB
Markdown
187 lines
7.6 KiB
Markdown
# Bot Optimization
|
|
|
|
This page explains where to customize your strategies, and add new
|
|
indicators.
|
|
|
|
## Table of Contents
|
|
|
|
- [Install a custom strategy file](#install-a-custom-strategy-file)
|
|
- [Customize your strategy](#change-your-strategy)
|
|
- [Add more Indicator](#add-more-indicator)
|
|
- [Where is the default strategy](#where-is-the-default-strategy)
|
|
|
|
Since the version `0.16.0` the bot allows using custom strategy file.
|
|
|
|
## Install a custom strategy file
|
|
|
|
This is very simple. Copy paste your strategy file into the folder
|
|
`user_data/strategies`.
|
|
|
|
Let assume you have a class called `AwesomeStrategy` in the file `awesome-strategy.py`:
|
|
|
|
1. Move your file into `user_data/strategies` (you should have `user_data/strategies/awesome-strategy.py`
|
|
2. Start the bot with the param `--strategy AwesomeStrategy` (the parameter is the class name)
|
|
|
|
```bash
|
|
python3 ./freqtrade/main.py --strategy AwesomeStrategy
|
|
```
|
|
|
|
## Change your strategy
|
|
|
|
The bot includes a default strategy file. However, we recommend you to
|
|
use your own file to not have to lose your parameters every time the default
|
|
strategy file will be updated on Github. Put your custom strategy file
|
|
into the folder `user_data/strategies`.
|
|
|
|
A strategy file contains all the information needed to build a good strategy:
|
|
|
|
- Buy strategy rules
|
|
- Sell strategy rules
|
|
- Minimal ROI recommended
|
|
- Stoploss recommended
|
|
|
|
The bot also include a sample strategy called `TestStrategy` you can update: `user_data/strategies/test_strategy.py`.
|
|
You can test it with the parameter: `--strategy TestStrategy`
|
|
|
|
``` bash
|
|
python3 ./freqtrade/main.py --strategy AwesomeStrategy
|
|
```
|
|
|
|
### Specify custom strategy location
|
|
|
|
If you want to use a strategy from a different folder you can pass `--strategy-path`
|
|
|
|
```bash
|
|
python3 ./freqtrade/main.py --strategy AwesomeStrategy --strategy-path /some/folder
|
|
```
|
|
|
|
**For the following section we will use the [user_data/strategies/test_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py)
|
|
file as reference.**
|
|
|
|
### Buy strategy
|
|
|
|
Edit the method `populate_buy_trend()` into your strategy file to update your buy strategy.
|
|
|
|
Sample from `user_data/strategies/test_strategy.py`:
|
|
|
|
```python
|
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the buy signal for the given dataframe
|
|
:param dataframe: DataFrame populated with indicators
|
|
:param metadata: Additional information, like the currently traded pair
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['adx'] > 30) &
|
|
(dataframe['tema'] <= dataframe['bb_middleband']) &
|
|
(dataframe['tema'] > dataframe['tema'].shift(1))
|
|
),
|
|
'buy'] = 1
|
|
|
|
return dataframe
|
|
```
|
|
|
|
### Sell strategy
|
|
|
|
Edit the method `populate_sell_trend()` into your strategy file to update your sell strategy.
|
|
Please note that the sell-signal is only used if `use_sell_signal` is set to true in the configuration.
|
|
|
|
Sample from `user_data/strategies/test_strategy.py`:
|
|
|
|
```python
|
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Based on TA indicators, populates the sell signal for the given dataframe
|
|
:param dataframe: DataFrame populated with indicators
|
|
:param metadata: Additional information, like the currently traded pair
|
|
:return: DataFrame with buy column
|
|
"""
|
|
dataframe.loc[
|
|
(
|
|
(dataframe['adx'] > 70) &
|
|
(dataframe['tema'] > dataframe['bb_middleband']) &
|
|
(dataframe['tema'] < dataframe['tema'].shift(1))
|
|
),
|
|
'sell'] = 1
|
|
return dataframe
|
|
```
|
|
|
|
## Add more Indicators
|
|
|
|
As you have seen, buy and sell strategies need indicators. You can add more indicators by extending the list contained in the method `populate_indicators()` from your strategy file.
|
|
|
|
You should only add the indicators used in either `populate_buy_trend()`, `populate_sell_trend()`, or to populate another indicator, otherwise performance may suffer.
|
|
|
|
Sample:
|
|
|
|
```python
|
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
"""
|
|
Adds several different TA indicators to the given DataFrame
|
|
|
|
Performance Note: For the best performance be frugal on the number of indicators
|
|
you are using. Let uncomment only the indicator you are using in your strategies
|
|
or your hyperopt configuration, otherwise you will waste your memory and CPU usage.
|
|
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
|
:param metadata: Additional information, like the currently traded pair
|
|
:return: a Dataframe with all mandatory indicators for the strategies
|
|
"""
|
|
dataframe['sar'] = ta.SAR(dataframe)
|
|
dataframe['adx'] = ta.ADX(dataframe)
|
|
stoch = ta.STOCHF(dataframe)
|
|
dataframe['fastd'] = stoch['fastd']
|
|
dataframe['fastk'] = stoch['fastk']
|
|
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
|
dataframe['sma'] = ta.SMA(dataframe, timeperiod=40)
|
|
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)
|
|
dataframe['mfi'] = ta.MFI(dataframe)
|
|
dataframe['rsi'] = ta.RSI(dataframe)
|
|
dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
|
|
dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
|
|
dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
|
|
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
|
|
dataframe['ao'] = awesome_oscillator(dataframe)
|
|
macd = ta.MACD(dataframe)
|
|
dataframe['macd'] = macd['macd']
|
|
dataframe['macdsignal'] = macd['macdsignal']
|
|
dataframe['macdhist'] = macd['macdhist']
|
|
hilbert = ta.HT_SINE(dataframe)
|
|
dataframe['htsine'] = hilbert['sine']
|
|
dataframe['htleadsine'] = hilbert['leadsine']
|
|
dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
|
|
dataframe['plus_di'] = ta.PLUS_DI(dataframe)
|
|
dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
|
|
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
|
return dataframe
|
|
```
|
|
|
|
### Metadata dict
|
|
|
|
The metadata-dict (available for `populate_buy_trend`, `populate_sell_trend`, `populate_indicators`) contains additional information.
|
|
Currently this is `pair`, which can be accessed using `metadata['pair']` - and will return a pair in the format `XRP/BTC`.
|
|
|
|
### Want more indicator examples
|
|
|
|
Look into the [user_data/strategies/test_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/test_strategy.py).
|
|
Then uncomment indicators you need.
|
|
|
|
### Where is the default strategy?
|
|
|
|
The default buy strategy is located in the file
|
|
[freqtrade/default_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/strategy/default_strategy.py).
|
|
|
|
### Further strategy ideas
|
|
|
|
To get additional Ideas for strategies, head over to our [strategy repository](https://github.com/freqtrade/freqtrade-strategies). Feel free to use them as they are - but results will depend on the current market situation, pairs used etc. - therefore please backtest the strategy for your exchange/desired pairs first, evaluate carefully, use at your own risk.
|
|
Feel free to use any of them as inspiration for your own strategies.
|
|
We're happy to accept Pull Requests containing new Strategies to that repo.
|
|
|
|
We also got a *strategy-sharing* channel in our [Slack community](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE) which is a great place to get and/or share ideas.
|
|
|
|
## Next step
|
|
|
|
Now you have a perfect strategy you probably want to backtest it.
|
|
Your next step is to learn [How to use the Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md).
|