32 KiB
Strategy Migration between V2 and V3
To support new markets and trade-types (namely short trades / trades with leverage), some things had to change in the interface. If you intend on using markets other than spot markets, please migrate your strategy to the new format.
We have put a great effort into keeping compatibility with existing strategies, so if you just want to continue using freqtrade in spot markets, there should be no changes necessary for now.
You can use the quick summary as checklist. Please refer to the detailed sections below for full migration details.
Quick summary / migration checklist
Note : forcesell
, forcebuy
, emergencysell
are changed to force_exit
, force_enter
, emergency_exit
respectively.
- Strategy methods:
populate_buy_trend()
->populate_entry_trend()
populate_sell_trend()
->populate_exit_trend()
custom_sell()
->custom_exit()
check_buy_timeout()
->check_entry_timeout()
check_sell_timeout()
->check_exit_timeout()
- New
side
argument to callbacks without trade object - Changed argument name in
confirm_trade_exit
- Dataframe columns:
- trade-object now has the following new properties:
is_short
entry_side
exit_side
trade_direction
- renamed:
sell_reason
->exit_reason
- Renamed
trade.nr_of_successful_buys
totrade.nr_of_successful_entries
(mostly relevant foradjust_trade_position()
) - Introduced new
leverage
callback. - Informative pairs can now pass a 3rd element in the Tuple, defining the candle type.
@informative
decorator now takes an optionalcandle_type
argument.- helper methods
stoploss_from_open
andstoploss_from_absolute
now takeis_short
as additional argument. INTERFACE_VERSION
should be set to 3.- Strategy/Configuration settings.
order_time_in_force
buy -> entry, sell -> exit.order_types
buy -> entry, sell -> exit.unfilledtimeout
buy -> entry, sell -> exit.ignore_buying_expired_candle_after
-> moved to root level instead of "ask_strategy/exit_pricing"
- Terminology changes
- Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using
exit_reason
checks and eventually update your strategy.sell_signal
->exit_signal
custom_sell
->custom_exit
force_sell
->force_exit
emergency_sell
->emergency_exit
- Order pricing
bid_strategy
->entry_pricing
ask_strategy
->exit_pricing
ask_last_balance
->price_last_balance
bid_last_balance
->price_last_balance
- Webhook terminology changed from "sell" to "exit", and from "buy" to entry
webhookbuy
->entry
webhookbuyfill
->entry_fill
webhookbuycancel
->entry_cancel
webhooksell
->exit
webhooksellfill
->exit_fill
webhooksellcancel
->exit_cancel
- Telegram notification settings
buy
->entry
buy_fill
->entry_fill
buy_cancel
->entry_cancel
sell
->exit
sell_fill
->exit_fill
sell_cancel
->exit_cancel
- Strategy/config settings:
use_sell_signal
->use_exit_signal
sell_profit_only
->exit_profit_only
sell_profit_offset
->exit_profit_offset
ignore_roi_if_buy_signal
->ignore_roi_if_entry_signal
forcebuy_enable
->force_entry_enable
- Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using
Extensive explanation
populate_buy_trend
In populate_buy_trend()
- you will want to change the columns you assign from 'buy
' to 'enter_long'
, as well as the method name from populate_buy_trend
to populate_entry_trend
.
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['buy', 'buy_tag']] = (1, 'rsi_cross')
return dataframe
After:
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['enter_long', 'enter_tag']] = (1, 'rsi_cross')
return dataframe
Please refer to the Strategy documentation on how to enter and exit short trades.
populate_sell_trend
Similar to populate_buy_trend
, populate_sell_trend()
will be renamed to populate_exit_trend()
.
We'll also change the column from 'sell'
to 'exit_long'
.
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['sell', 'exit_tag']] = (1, 'some_exit_tag')
return dataframe
After
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
dataframe.loc[
(
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard
(dataframe['volume'] > 0) # Make sure Volume is not 0
),
['exit_long', 'exit_tag']] = (1, 'some_exit_tag')
return dataframe
Please refer to the Strategy documentation on how to enter and exit short trades.
custom_sell
custom_sell
has been renamed to custom_exit
.
It's now also being called for every iteration, independent of current profit and exit_profit_only
settings.
class AwesomeStrategy(IStrategy):
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs):
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
# ...
class AwesomeStrategy(IStrategy):
def custom_exit(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
current_profit: float, **kwargs):
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
last_candle = dataframe.iloc[-1].squeeze()
# ...
custom_entry_timeout
check_buy_timeout()
has been renamed to check_entry_timeout()
, and check_sell_timeout()
has been renamed to check_exit_timeout()
.
class AwesomeStrategy(IStrategy):
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict,
current_time: datetime, **kwargs) -> bool:
return False
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict,
current_time: datetime, **kwargs) -> bool:
return False
class AwesomeStrategy(IStrategy):
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
return False
def check_exit_timeout(self, pair: str, trade: 'Trade', order: 'Order',
current_time: datetime, **kwargs) -> bool:
return False
custom_stake_amount
New string argument side
- which can be either "long"
or "short"
.
class AwesomeStrategy(IStrategy):
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: Optional[float], max_stake: float,
entry_tag: Optional[str], **kwargs) -> float:
# ...
return proposed_stake
class AwesomeStrategy(IStrategy):
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
proposed_stake: float, min_stake: Optional[float], max_stake: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
# ...
return proposed_stake
confirm_trade_entry
New string argument side
- which can be either "long"
or "short"
.
class AwesomeStrategy(IStrategy):
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
**kwargs) -> bool:
return True
After:
class AwesomeStrategy(IStrategy):
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
side: str, **kwargs) -> bool:
return True
confirm_trade_exit
Changed argument sell_reason
to exit_reason
.
For compatibility, sell_reason
will still be provided for a limited time.
class AwesomeStrategy(IStrategy):
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
rate: float, time_in_force: str, sell_reason: str,
current_time: datetime, **kwargs) -> bool:
return True
After:
class AwesomeStrategy(IStrategy):
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
rate: float, time_in_force: str, exit_reason: str,
current_time: datetime, **kwargs) -> bool:
return True
custom_entry_price
New string argument side
- which can be either "long"
or "short"
.
class AwesomeStrategy(IStrategy):
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
entry_tag: Optional[str], **kwargs) -> float:
return proposed_rate
After:
class AwesomeStrategy(IStrategy):
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
entry_tag: Optional[str], side: str, **kwargs) -> float:
return proposed_rate
Adjust trade position changes
While adjust-trade-position itself did not change, you should no longer use trade.nr_of_successful_buys
- and instead use trade.nr_of_successful_entries
, which will also include short entries.
Helper methods
Added argument "is_short" to stoploss_from_open
and stoploss_from_absolute
.
This should be given the value of trade.is_short
.
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, **kwargs) -> float:
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
if current_profit > 0.10:
return stoploss_from_open(0.07, current_profit)
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate)
return 1
After:
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
current_rate: float, current_profit: float, after_fill: bool, **kwargs) -> float:
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
if current_profit > 0.10:
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short)
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate, is_short=trade.is_short)
Strategy/Configuration settings
order_time_in_force
order_time_in_force
attributes changed from "buy"
to "entry"
and "sell"
to "exit"
.
order_time_in_force: Dict = {
"buy": "gtc",
"sell": "gtc",
}
After:
order_time_in_force: Dict = {
"entry": "GTC",
"exit": "GTC",
}
order_types
order_types
have changed all wordings from buy
to entry
- and sell
to exit
.
And two words are joined with _
.
order_types = {
"buy": "limit",
"sell": "limit",
"emergencysell": "market",
"forcesell": "market",
"forcebuy": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60
}
After:
order_types = {
"entry": "limit",
"exit": "limit",
"emergency_exit": "market",
"force_exit": "market",
"force_entry": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_on_exchange_interval": 60
}
Strategy level settings
use_sell_signal
->use_exit_signal
sell_profit_only
->exit_profit_only
sell_profit_offset
->exit_profit_offset
ignore_roi_if_buy_signal
->ignore_roi_if_entry_signal
# These values can be overridden in the config.
use_sell_signal = True
sell_profit_only = True
sell_profit_offset: 0.01
ignore_roi_if_buy_signal = False
After:
# These values can be overridden in the config.
use_exit_signal = True
exit_profit_only = True
exit_profit_offset: 0.01
ignore_roi_if_entry_signal = False
unfilledtimeout
unfilledtimeout
have changed all wordings from buy
to entry
- and sell
to exit
.
unfilledtimeout = {
"buy": 10,
"sell": 10,
"exit_timeout_count": 0,
"unit": "minutes"
}
After:
unfilledtimeout = {
"entry": 10,
"exit": 10,
"exit_timeout_count": 0,
"unit": "minutes"
}
order pricing
Order pricing changed in 2 ways. bid_strategy
was renamed to entry_pricing
and ask_strategy
was renamed to exit_pricing
.
The attributes ask_last_balance
-> price_last_balance
and bid_last_balance
-> price_last_balance
were renamed as well.
Also, price-side can now be defined as ask
, bid
, same
or other
.
Please refer to the pricing documentation for more information.
{
"bid_strategy": {
"price_side": "bid",
"use_order_book": true,
"order_book_top": 1,
"ask_last_balance": 0.0,
"check_depth_of_market": {
"enabled": false,
"bids_to_ask_delta": 1
}
},
"ask_strategy":{
"price_side": "ask",
"use_order_book": true,
"order_book_top": 1,
"bid_last_balance": 0.0
"ignore_buying_expired_candle_after": 120
}
}
after:
{
"entry_pricing": {
"price_side": "same",
"use_order_book": true,
"order_book_top": 1,
"price_last_balance": 0.0,
"check_depth_of_market": {
"enabled": false,
"bids_to_ask_delta": 1
}
},
"exit_pricing":{
"price_side": "same",
"use_order_book": true,
"order_book_top": 1,
"price_last_balance": 0.0
},
"ignore_buying_expired_candle_after": 120
}
FreqAI strategy
The populate_any_indicators()
method has been split into feature_engineering_expand_all()
, feature_engineering_expand_basic()
, feature_engineering_standard()
andset_freqai_targets()
.
For each new function, the pair (and timeframe where necessary) will be automatically added to the column. As such, the definition of features becomes much simpler with the new logic.
For a full explanation of each method, please go to the corresponding freqAI documentation page
def populate_any_indicators(
self, pair, df, tf, informative=None, set_generalized_indicators=False
):
if informative is None:
informative = self.dp.get_pair_dataframe(pair, tf)
# first loop is automatically duplicating indicators for time periods
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
t = int(t)
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, timeperiod=t)
informative[f"%-{pair}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
informative[f"%-{pair}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(informative), window=t, stds=2.2
)
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
informative[f"%-{pair}bb_width-period_{t}"] = (
informative[f"{pair}bb_upperband-period_{t}"]
- informative[f"{pair}bb_lowerband-period_{t}"]
) / informative[f"{pair}bb_middleband-period_{t}"]
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
)
informative[f"%-{pair}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
informative[f"%-{pair}relative_volume-period_{t}"] = (
informative["volume"] / informative["volume"].rolling(t).mean()
) # (1)
informative[f"%-{pair}pct-change"] = informative["close"].pct_change()
informative[f"%-{pair}raw_volume"] = informative["volume"]
informative[f"%-{pair}raw_price"] = informative["close"]
# (2)
indicators = [col for col in informative if col.startswith("%")]
# This loop duplicates and shifts all indicators to add a sense of recency to data
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
if n == 0:
continue
informative_shift = informative[indicators].shift(n)
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
informative = pd.concat((informative, informative_shift), axis=1)
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
skip_columns = [
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
]
df = df.drop(columns=skip_columns)
# Add generalized indicators here (because in live, it will call this
# function to populate indicators during training). Notice how we ensure not to
# add them multiple times
if set_generalized_indicators:
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
# (3)
# user adds targets here by prepending them with &- (see convention below)
df["&-s_close"] = (
df["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ df["close"]
- 1
) # (4)
return df
- Features - Move to
feature_engineering_expand_all
- Basic features, not expanded across
include_periods_candles
- move tofeature_engineering_expand_basic()
. - Standard features which should not be expanded - move to
feature_engineering_standard()
. - Targets - Move this part to
set_freqai_targets()
.
freqai - feature engineering expand all
Features will now expand automatically. As such, the expansion loops, as well as the {pair}
/ {timeframe}
parts will need to be removed.
def feature_engineering_expand_all(self, dataframe, period, **kwargs) -> DataFrame::
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
`include_corr_pairs`. In other words, a single feature defined in this function
will automatically expand to a total of
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
`include_corr_pairs` numbers of features added to the model.
All features must be prepended with `%` to be recognized by FreqAI internals.
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
bollinger = qtpylib.bollinger_bands(
qtpylib.typical_price(dataframe), window=period, stds=2.2
)
dataframe["bb_lowerband-period"] = bollinger["lower"]
dataframe["bb_middleband-period"] = bollinger["mid"]
dataframe["bb_upperband-period"] = bollinger["upper"]
dataframe["%-bb_width-period"] = (
dataframe["bb_upperband-period"]
- dataframe["bb_lowerband-period"]
) / dataframe["bb_middleband-period"]
dataframe["%-close-bb_lower-period"] = (
dataframe["close"] / dataframe["bb_lowerband-period"]
)
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
dataframe["%-relative_volume-period"] = (
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
)
return dataframe
Freqai - feature engineering basic
Basic features. Make sure to remove the {pair}
part from your features.
def feature_engineering_expand_basic(self, dataframe: DataFrame, **kwargs) -> DataFrame::
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
In other words, a single feature defined in this function
will automatically expand to a total of
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
numbers of features added to the model.
Features defined here will *not* be automatically duplicated on user defined
`indicator_periods_candles`
All features must be prepended with `%` to be recognized by FreqAI internals.
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
FreqAI - feature engineering standard
def feature_engineering_standard(self, dataframe: DataFrame, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
This is the final function to be called, which means that the dataframe entering this
function will contain all the features and columns created by all other
freqai_feature_engineering_* functions.
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
This function is a good place for any feature that should not be auto-expanded upon
(e.g. day of the week).
All features must be prepended with `%` to be recognized by FreqAI internals.
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the features
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
FreqAI - set Targets
Targets now get their own, dedicated method.
def set_freqai_targets(self, dataframe: DataFrame, **kwargs) -> DataFrame:
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the targets
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
dataframe["&-s_close"] = (
dataframe["close"]
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
.mean()
/ dataframe["close"]
- 1
)
return dataframe
FreqAI - New data Pipeline
If you have created your own custom IFreqaiModel
with a custom train()
/predict()
function, and you still rely on data_cleaning_train/predict()
, then you will need to migrate to the new pipeline. If your model does not rely on data_cleaning_train/predict()
, then you do not need to worry about this migration. That means that this migration guide is relevant for a very small percentage of power-users. If you stumbled upon this guide by mistake, feel free to inquire in depth about your problem in the Freqtrade discord server.
The conversion involves first removing data_cleaning_train/predict()
and replacing them with a define_data_pipeline()
and define_label_pipeline()
function to your IFreqaiModel
class:
class MyCoolFreqaiModel(BaseRegressionModel):
"""
Some cool custom IFreqaiModel you made before Freqtrade version 2023.6
"""
def train(
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
) -> Any:
# ... your custom stuff
# Remove these lines
# data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
# self.data_cleaning_train(dk)
# data_dictionary = dk.normalize_data(data_dictionary)
# (1)
# Add these lines. Now we control the pipeline fit/transform ourselves
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
(dd["train_features"],
dd["train_labels"],
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
dd["train_labels"],
dd["train_weights"])
(dd["test_features"],
dd["test_labels"],
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
dd["test_labels"],
dd["test_weights"])
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
# ... your custom code
return model
def predict(
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
# ... your custom stuff
# Remove these lines:
# self.data_cleaning_predict(dk)
# (2)
# Add these lines:
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
dk.data_dictionary["prediction_features"], outlier_check=True)
# Remove this line
# pred_df = dk.denormalize_labels_from_metadata(pred_df)
# (3)
# Replace with these lines
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
if self.freqai_info.get("DI_threshold", 0) > 0:
dk.DI_values = dk.feature_pipeline["di"].di_values
else:
dk.DI_values = np.zeros(outliers.shape[0])
dk.do_predict = outliers
# ... your custom code
return (pred_df, dk.do_predict)
- Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new
define_data_pipeline()
anddefine_label_pipeline()
functions. Thedata_cleaning_train()
anddata_cleaning_predict()
functions are no longer used. You can overridedefine_data_pipeline()
to create your own custom pipeline if you wish. - Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new
define_data_pipeline()
anddefine_label_pipeline()
functions. Thedata_cleaning_train()
anddata_cleaning_predict()
functions are no longer used. You can overridedefine_data_pipeline()
to create your own custom pipeline if you wish. - Data denormalization is done with the new pipeline. Replace this with the lines below.