3.0 KiB
Advanced Hyperopt
This page explains some advanced Hyperopt topics that may require higher coding skills and Python knowledge than creation of an ordinal hyperoptimization class.
Creating and using a custom loss function
To use a custom loss function class, make sure that the function hyperopt_loss_function
is defined in your custom hyperopt loss class.
For the sample below, you then need to add the command line parameter --hyperopt-loss SuperDuperHyperOptLoss
to your hyperopt call so this function is being used.
A sample of this can be found below, which is identical to the Default Hyperopt loss implementation. A full sample can be found in freqtrade/templates/
from freqtrade.optimize.hyperopt import IHyperOptLoss
TARGET_TRADES = 600
EXPECTED_MAX_PROFIT = 3.0
MAX_ACCEPTED_TRADE_DURATION = 300
class SuperDuperHyperOptLoss(IHyperOptLoss):
"""
Defines the default loss function for hyperopt
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for better results
This is the legacy algorithm (used until now in freqtrade).
Weights are distributed as follows:
* 0.4 to trade duration
* 0.25: Avoiding trade loss
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
"""
total_profit = results.profit_percent.sum()
trade_duration = results.trade_duration.mean()
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
result = trade_loss + profit_loss + duration_loss
return result
Currently, the arguments are:
results
: DataFrame containing the result
The following columns are available in results (corresponds to the output-file of backtesting when used with--export trades
):
pair, profit_percent, profit_abs, open_time, close_time, open_index, close_index, trade_duration, open_at_end, open_rate, close_rate, sell_reason
trade_count
: Amount of trades (identical tolen(results)
)min_date
: Start date of the hyperopting TimeFramemin_date
: End date of the hyperopting TimeFrame
This function needs to return a floating point number (float
). Smaller numbers will be interpreted as better results. The parameters and balancing for this is up to you.
!!! Note This function is called once per iteration - so please make sure to have this as optimized as possible to not slow hyperopt down unnecessarily.
!!! Note
Please keep the arguments *args
and **kwargs
in the interface to allow us to extend this interface later.