mirror of
https://github.com/freqtrade/freqtrade.git
synced 2024-11-10 10:21:59 +00:00
815 lines
32 KiB
Markdown
815 lines
32 KiB
Markdown
# Strategy Migration between V2 and V3
|
|
|
|
To support new markets and trade-types (namely short trades / trades with leverage), some things had to change in the interface.
|
|
If you intend on using markets other than spot markets, please migrate your strategy to the new format.
|
|
|
|
We have put a great effort into keeping compatibility with existing strategies, so if you just want to continue using freqtrade in __spot markets__, there should be no changes necessary for now.
|
|
|
|
You can use the quick summary as checklist. Please refer to the detailed sections below for full migration details.
|
|
|
|
## Quick summary / migration checklist
|
|
|
|
Note : `forcesell`, `forcebuy`, `emergencysell` are changed to `force_exit`, `force_enter`, `emergency_exit` respectively.
|
|
|
|
* Strategy methods:
|
|
* [`populate_buy_trend()` -> `populate_entry_trend()`](#populate_buy_trend)
|
|
* [`populate_sell_trend()` -> `populate_exit_trend()`](#populate_sell_trend)
|
|
* [`custom_sell()` -> `custom_exit()`](#custom_sell)
|
|
* [`check_buy_timeout()` -> `check_entry_timeout()`](#custom_entry_timeout)
|
|
* [`check_sell_timeout()` -> `check_exit_timeout()`](#custom_entry_timeout)
|
|
* New `side` argument to callbacks without trade object
|
|
* [`custom_stake_amount`](#custom_stake_amount)
|
|
* [`confirm_trade_entry`](#confirm_trade_entry)
|
|
* [`custom_entry_price`](#custom_entry_price)
|
|
* [Changed argument name in `confirm_trade_exit`](#confirm_trade_exit)
|
|
* Dataframe columns:
|
|
* [`buy` -> `enter_long`](#populate_buy_trend)
|
|
* [`sell` -> `exit_long`](#populate_sell_trend)
|
|
* [`buy_tag` -> `enter_tag` (used for both long and short trades)](#populate_buy_trend)
|
|
* [New column `enter_short` and corresponding new column `exit_short`](#populate_sell_trend)
|
|
* trade-object now has the following new properties:
|
|
* `is_short`
|
|
* `entry_side`
|
|
* `exit_side`
|
|
* `trade_direction`
|
|
* renamed: `sell_reason` -> `exit_reason`
|
|
* [Renamed `trade.nr_of_successful_buys` to `trade.nr_of_successful_entries` (mostly relevant for `adjust_trade_position()`)](#adjust-trade-position-changes)
|
|
* Introduced new [`leverage` callback](strategy-callbacks.md#leverage-callback).
|
|
* Informative pairs can now pass a 3rd element in the Tuple, defining the candle type.
|
|
* `@informative` decorator now takes an optional `candle_type` argument.
|
|
* [helper methods](#helper-methods) `stoploss_from_open` and `stoploss_from_absolute` now take `is_short` as additional argument.
|
|
* `INTERFACE_VERSION` should be set to 3.
|
|
* [Strategy/Configuration settings](#strategyconfiguration-settings).
|
|
* `order_time_in_force` buy -> entry, sell -> exit.
|
|
* `order_types` buy -> entry, sell -> exit.
|
|
* `unfilledtimeout` buy -> entry, sell -> exit.
|
|
* `ignore_buying_expired_candle_after` -> moved to root level instead of "ask_strategy/exit_pricing"
|
|
* Terminology changes
|
|
* Sell reasons changed to reflect the new naming of "exit" instead of sells. Be careful in your strategy if you're using `exit_reason` checks and eventually update your strategy.
|
|
* `sell_signal` -> `exit_signal`
|
|
* `custom_sell` -> `custom_exit`
|
|
* `force_sell` -> `force_exit`
|
|
* `emergency_sell` -> `emergency_exit`
|
|
* Order pricing
|
|
* `bid_strategy` -> `entry_pricing`
|
|
* `ask_strategy` -> `exit_pricing`
|
|
* `ask_last_balance` -> `price_last_balance`
|
|
* `bid_last_balance` -> `price_last_balance`
|
|
* Webhook terminology changed from "sell" to "exit", and from "buy" to entry
|
|
* `webhookbuy` -> `entry`
|
|
* `webhookbuyfill` -> `entry_fill`
|
|
* `webhookbuycancel` -> `entry_cancel`
|
|
* `webhooksell` -> `exit`
|
|
* `webhooksellfill` -> `exit_fill`
|
|
* `webhooksellcancel` -> `exit_cancel`
|
|
* Telegram notification settings
|
|
* `buy` -> `entry`
|
|
* `buy_fill` -> `entry_fill`
|
|
* `buy_cancel` -> `entry_cancel`
|
|
* `sell` -> `exit`
|
|
* `sell_fill` -> `exit_fill`
|
|
* `sell_cancel` -> `exit_cancel`
|
|
* Strategy/config settings:
|
|
* `use_sell_signal` -> `use_exit_signal`
|
|
* `sell_profit_only` -> `exit_profit_only`
|
|
* `sell_profit_offset` -> `exit_profit_offset`
|
|
* `ignore_roi_if_buy_signal` -> `ignore_roi_if_entry_signal`
|
|
* `forcebuy_enable` -> `force_entry_enable`
|
|
|
|
## Extensive explanation
|
|
|
|
### `populate_buy_trend`
|
|
|
|
In `populate_buy_trend()` - you will want to change the columns you assign from `'buy`' to `'enter_long'`, as well as the method name from `populate_buy_trend` to `populate_entry_trend`.
|
|
|
|
```python hl_lines="1 9"
|
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
dataframe.loc[
|
|
(
|
|
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
|
|
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard
|
|
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard
|
|
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
['buy', 'buy_tag']] = (1, 'rsi_cross')
|
|
|
|
return dataframe
|
|
```
|
|
|
|
After:
|
|
|
|
```python hl_lines="1 9"
|
|
def populate_entry_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
dataframe.loc[
|
|
(
|
|
(qtpylib.crossed_above(dataframe['rsi'], 30)) & # Signal: RSI crosses above 30
|
|
(dataframe['tema'] <= dataframe['bb_middleband']) & # Guard
|
|
(dataframe['tema'] > dataframe['tema'].shift(1)) & # Guard
|
|
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
['enter_long', 'enter_tag']] = (1, 'rsi_cross')
|
|
|
|
return dataframe
|
|
```
|
|
|
|
Please refer to the [Strategy documentation](strategy-customization.md#entry-signal-rules) on how to enter and exit short trades.
|
|
|
|
### `populate_sell_trend`
|
|
|
|
Similar to `populate_buy_trend`, `populate_sell_trend()` will be renamed to `populate_exit_trend()`.
|
|
We'll also change the column from `'sell'` to `'exit_long'`.
|
|
|
|
``` python hl_lines="1 9"
|
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
dataframe.loc[
|
|
(
|
|
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
|
|
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard
|
|
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard
|
|
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
['sell', 'exit_tag']] = (1, 'some_exit_tag')
|
|
return dataframe
|
|
```
|
|
|
|
After
|
|
|
|
``` python hl_lines="1 9"
|
|
def populate_exit_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
|
dataframe.loc[
|
|
(
|
|
(qtpylib.crossed_above(dataframe['rsi'], 70)) & # Signal: RSI crosses above 70
|
|
(dataframe['tema'] > dataframe['bb_middleband']) & # Guard
|
|
(dataframe['tema'] < dataframe['tema'].shift(1)) & # Guard
|
|
(dataframe['volume'] > 0) # Make sure Volume is not 0
|
|
),
|
|
['exit_long', 'exit_tag']] = (1, 'some_exit_tag')
|
|
return dataframe
|
|
```
|
|
|
|
Please refer to the [Strategy documentation](strategy-customization.md#exit-signal-rules) on how to enter and exit short trades.
|
|
|
|
### `custom_sell`
|
|
|
|
`custom_sell` has been renamed to `custom_exit`.
|
|
It's now also being called for every iteration, independent of current profit and `exit_profit_only` settings.
|
|
|
|
``` python hl_lines="2"
|
|
class AwesomeStrategy(IStrategy):
|
|
def custom_sell(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
|
|
current_profit: float, **kwargs):
|
|
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
|
last_candle = dataframe.iloc[-1].squeeze()
|
|
# ...
|
|
```
|
|
|
|
``` python hl_lines="2"
|
|
class AwesomeStrategy(IStrategy):
|
|
def custom_exit(self, pair: str, trade: 'Trade', current_time: 'datetime', current_rate: float,
|
|
current_profit: float, **kwargs):
|
|
dataframe, _ = self.dp.get_analyzed_dataframe(pair, self.timeframe)
|
|
last_candle = dataframe.iloc[-1].squeeze()
|
|
# ...
|
|
```
|
|
|
|
### `custom_entry_timeout`
|
|
|
|
`check_buy_timeout()` has been renamed to `check_entry_timeout()`, and `check_sell_timeout()` has been renamed to `check_exit_timeout()`.
|
|
|
|
``` python hl_lines="2 6"
|
|
class AwesomeStrategy(IStrategy):
|
|
def check_buy_timeout(self, pair: str, trade: 'Trade', order: dict,
|
|
current_time: datetime, **kwargs) -> bool:
|
|
return False
|
|
|
|
def check_sell_timeout(self, pair: str, trade: 'Trade', order: dict,
|
|
current_time: datetime, **kwargs) -> bool:
|
|
return False
|
|
```
|
|
|
|
``` python hl_lines="2 6"
|
|
class AwesomeStrategy(IStrategy):
|
|
def check_entry_timeout(self, pair: str, trade: 'Trade', order: 'Order',
|
|
current_time: datetime, **kwargs) -> bool:
|
|
return False
|
|
|
|
def check_exit_timeout(self, pair: str, trade: 'Trade', order: 'Order',
|
|
current_time: datetime, **kwargs) -> bool:
|
|
return False
|
|
```
|
|
|
|
### `custom_stake_amount`
|
|
|
|
New string argument `side` - which can be either `"long"` or `"short"`.
|
|
|
|
``` python hl_lines="4"
|
|
class AwesomeStrategy(IStrategy):
|
|
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
|
proposed_stake: float, min_stake: Optional[float], max_stake: float,
|
|
entry_tag: Optional[str], **kwargs) -> float:
|
|
# ...
|
|
return proposed_stake
|
|
```
|
|
|
|
``` python hl_lines="4"
|
|
class AwesomeStrategy(IStrategy):
|
|
def custom_stake_amount(self, pair: str, current_time: datetime, current_rate: float,
|
|
proposed_stake: float, min_stake: Optional[float], max_stake: float,
|
|
entry_tag: Optional[str], side: str, **kwargs) -> float:
|
|
# ...
|
|
return proposed_stake
|
|
```
|
|
|
|
### `confirm_trade_entry`
|
|
|
|
New string argument `side` - which can be either `"long"` or `"short"`.
|
|
|
|
``` python hl_lines="4"
|
|
class AwesomeStrategy(IStrategy):
|
|
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
|
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
|
|
**kwargs) -> bool:
|
|
return True
|
|
```
|
|
|
|
After:
|
|
|
|
``` python hl_lines="4"
|
|
class AwesomeStrategy(IStrategy):
|
|
def confirm_trade_entry(self, pair: str, order_type: str, amount: float, rate: float,
|
|
time_in_force: str, current_time: datetime, entry_tag: Optional[str],
|
|
side: str, **kwargs) -> bool:
|
|
return True
|
|
```
|
|
|
|
### `confirm_trade_exit`
|
|
|
|
Changed argument `sell_reason` to `exit_reason`.
|
|
For compatibility, `sell_reason` will still be provided for a limited time.
|
|
|
|
``` python hl_lines="3"
|
|
class AwesomeStrategy(IStrategy):
|
|
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
|
|
rate: float, time_in_force: str, sell_reason: str,
|
|
current_time: datetime, **kwargs) -> bool:
|
|
return True
|
|
```
|
|
|
|
After:
|
|
|
|
``` python hl_lines="3"
|
|
class AwesomeStrategy(IStrategy):
|
|
def confirm_trade_exit(self, pair: str, trade: Trade, order_type: str, amount: float,
|
|
rate: float, time_in_force: str, exit_reason: str,
|
|
current_time: datetime, **kwargs) -> bool:
|
|
return True
|
|
```
|
|
|
|
### `custom_entry_price`
|
|
|
|
New string argument `side` - which can be either `"long"` or `"short"`.
|
|
|
|
``` python hl_lines="3"
|
|
class AwesomeStrategy(IStrategy):
|
|
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
|
|
entry_tag: Optional[str], **kwargs) -> float:
|
|
return proposed_rate
|
|
```
|
|
|
|
After:
|
|
|
|
``` python hl_lines="3"
|
|
class AwesomeStrategy(IStrategy):
|
|
def custom_entry_price(self, pair: str, trade: Optional[Trade], current_time: datetime, proposed_rate: float,
|
|
entry_tag: Optional[str], side: str, **kwargs) -> float:
|
|
return proposed_rate
|
|
```
|
|
|
|
### Adjust trade position changes
|
|
|
|
While adjust-trade-position itself did not change, you should no longer use `trade.nr_of_successful_buys` - and instead use `trade.nr_of_successful_entries`, which will also include short entries.
|
|
|
|
### Helper methods
|
|
|
|
Added argument "is_short" to `stoploss_from_open` and `stoploss_from_absolute`.
|
|
This should be given the value of `trade.is_short`.
|
|
|
|
``` python hl_lines="5 7"
|
|
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
|
current_rate: float, current_profit: float, **kwargs) -> float:
|
|
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
|
|
if current_profit > 0.10:
|
|
return stoploss_from_open(0.07, current_profit)
|
|
|
|
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate)
|
|
|
|
return 1
|
|
|
|
```
|
|
|
|
After:
|
|
|
|
``` python hl_lines="5 7"
|
|
def custom_stoploss(self, pair: str, trade: 'Trade', current_time: datetime,
|
|
current_rate: float, current_profit: float, after_fill: bool,
|
|
**kwargs) -> Optional[float]:
|
|
# once the profit has risen above 10%, keep the stoploss at 7% above the open price
|
|
if current_profit > 0.10:
|
|
return stoploss_from_open(0.07, current_profit, is_short=trade.is_short)
|
|
|
|
return stoploss_from_absolute(current_rate - (candle['atr'] * 2), current_rate, is_short=trade.is_short, leverage=trade.leverage)
|
|
|
|
|
|
```
|
|
|
|
### Strategy/Configuration settings
|
|
|
|
#### `order_time_in_force`
|
|
|
|
`order_time_in_force` attributes changed from `"buy"` to `"entry"` and `"sell"` to `"exit"`.
|
|
|
|
``` python
|
|
order_time_in_force: Dict = {
|
|
"buy": "gtc",
|
|
"sell": "gtc",
|
|
}
|
|
```
|
|
|
|
After:
|
|
|
|
``` python hl_lines="2 3"
|
|
order_time_in_force: Dict = {
|
|
"entry": "GTC",
|
|
"exit": "GTC",
|
|
}
|
|
```
|
|
|
|
#### `order_types`
|
|
|
|
`order_types` have changed all wordings from `buy` to `entry` - and `sell` to `exit`.
|
|
And two words are joined with `_`.
|
|
|
|
``` python hl_lines="2-6"
|
|
order_types = {
|
|
"buy": "limit",
|
|
"sell": "limit",
|
|
"emergencysell": "market",
|
|
"forcesell": "market",
|
|
"forcebuy": "market",
|
|
"stoploss": "market",
|
|
"stoploss_on_exchange": false,
|
|
"stoploss_on_exchange_interval": 60
|
|
}
|
|
```
|
|
|
|
After:
|
|
|
|
``` python hl_lines="2-6"
|
|
order_types = {
|
|
"entry": "limit",
|
|
"exit": "limit",
|
|
"emergency_exit": "market",
|
|
"force_exit": "market",
|
|
"force_entry": "market",
|
|
"stoploss": "market",
|
|
"stoploss_on_exchange": false,
|
|
"stoploss_on_exchange_interval": 60
|
|
}
|
|
```
|
|
|
|
#### Strategy level settings
|
|
|
|
* `use_sell_signal` -> `use_exit_signal`
|
|
* `sell_profit_only` -> `exit_profit_only`
|
|
* `sell_profit_offset` -> `exit_profit_offset`
|
|
* `ignore_roi_if_buy_signal` -> `ignore_roi_if_entry_signal`
|
|
|
|
``` python hl_lines="2-5"
|
|
# These values can be overridden in the config.
|
|
use_sell_signal = True
|
|
sell_profit_only = True
|
|
sell_profit_offset: 0.01
|
|
ignore_roi_if_buy_signal = False
|
|
```
|
|
|
|
After:
|
|
|
|
``` python hl_lines="2-5"
|
|
# These values can be overridden in the config.
|
|
use_exit_signal = True
|
|
exit_profit_only = True
|
|
exit_profit_offset: 0.01
|
|
ignore_roi_if_entry_signal = False
|
|
```
|
|
|
|
#### `unfilledtimeout`
|
|
|
|
`unfilledtimeout` have changed all wordings from `buy` to `entry` - and `sell` to `exit`.
|
|
|
|
``` python hl_lines="2-3"
|
|
unfilledtimeout = {
|
|
"buy": 10,
|
|
"sell": 10,
|
|
"exit_timeout_count": 0,
|
|
"unit": "minutes"
|
|
}
|
|
```
|
|
|
|
After:
|
|
|
|
``` python hl_lines="2-3"
|
|
unfilledtimeout = {
|
|
"entry": 10,
|
|
"exit": 10,
|
|
"exit_timeout_count": 0,
|
|
"unit": "minutes"
|
|
}
|
|
```
|
|
|
|
#### `order pricing`
|
|
|
|
Order pricing changed in 2 ways. `bid_strategy` was renamed to `entry_pricing` and `ask_strategy` was renamed to `exit_pricing`.
|
|
The attributes `ask_last_balance` -> `price_last_balance` and `bid_last_balance` -> `price_last_balance` were renamed as well.
|
|
Also, price-side can now be defined as `ask`, `bid`, `same` or `other`.
|
|
Please refer to the [pricing documentation](configuration.md#prices-used-for-orders) for more information.
|
|
|
|
``` json hl_lines="2-3 6 12-13 16"
|
|
{
|
|
"bid_strategy": {
|
|
"price_side": "bid",
|
|
"use_order_book": true,
|
|
"order_book_top": 1,
|
|
"ask_last_balance": 0.0,
|
|
"check_depth_of_market": {
|
|
"enabled": false,
|
|
"bids_to_ask_delta": 1
|
|
}
|
|
},
|
|
"ask_strategy":{
|
|
"price_side": "ask",
|
|
"use_order_book": true,
|
|
"order_book_top": 1,
|
|
"bid_last_balance": 0.0
|
|
"ignore_buying_expired_candle_after": 120
|
|
}
|
|
}
|
|
```
|
|
|
|
after:
|
|
|
|
``` json hl_lines="2-3 6 12-13 16"
|
|
{
|
|
"entry_pricing": {
|
|
"price_side": "same",
|
|
"use_order_book": true,
|
|
"order_book_top": 1,
|
|
"price_last_balance": 0.0,
|
|
"check_depth_of_market": {
|
|
"enabled": false,
|
|
"bids_to_ask_delta": 1
|
|
}
|
|
},
|
|
"exit_pricing":{
|
|
"price_side": "same",
|
|
"use_order_book": true,
|
|
"order_book_top": 1,
|
|
"price_last_balance": 0.0
|
|
},
|
|
"ignore_buying_expired_candle_after": 120
|
|
}
|
|
```
|
|
|
|
## FreqAI strategy
|
|
|
|
The `populate_any_indicators()` method has been split into `feature_engineering_expand_all()`, `feature_engineering_expand_basic()`, `feature_engineering_standard()` and`set_freqai_targets()`.
|
|
|
|
For each new function, the pair (and timeframe where necessary) will be automatically added to the column.
|
|
As such, the definition of features becomes much simpler with the new logic.
|
|
|
|
For a full explanation of each method, please go to the corresponding [freqAI documentation page](freqai-feature-engineering.md#defining-the-features)
|
|
|
|
``` python linenums="1" hl_lines="12-37 39-42 63-65 67-75"
|
|
|
|
def populate_any_indicators(
|
|
self, pair, df, tf, informative=None, set_generalized_indicators=False
|
|
):
|
|
|
|
if informative is None:
|
|
informative = self.dp.get_pair_dataframe(pair, tf)
|
|
|
|
# first loop is automatically duplicating indicators for time periods
|
|
for t in self.freqai_info["feature_parameters"]["indicator_periods_candles"]:
|
|
|
|
t = int(t)
|
|
informative[f"%-{pair}rsi-period_{t}"] = ta.RSI(informative, timeperiod=t)
|
|
informative[f"%-{pair}mfi-period_{t}"] = ta.MFI(informative, timeperiod=t)
|
|
informative[f"%-{pair}adx-period_{t}"] = ta.ADX(informative, timeperiod=t)
|
|
informative[f"%-{pair}sma-period_{t}"] = ta.SMA(informative, timeperiod=t)
|
|
informative[f"%-{pair}ema-period_{t}"] = ta.EMA(informative, timeperiod=t)
|
|
|
|
bollinger = qtpylib.bollinger_bands(
|
|
qtpylib.typical_price(informative), window=t, stds=2.2
|
|
)
|
|
informative[f"{pair}bb_lowerband-period_{t}"] = bollinger["lower"]
|
|
informative[f"{pair}bb_middleband-period_{t}"] = bollinger["mid"]
|
|
informative[f"{pair}bb_upperband-period_{t}"] = bollinger["upper"]
|
|
|
|
informative[f"%-{pair}bb_width-period_{t}"] = (
|
|
informative[f"{pair}bb_upperband-period_{t}"]
|
|
- informative[f"{pair}bb_lowerband-period_{t}"]
|
|
) / informative[f"{pair}bb_middleband-period_{t}"]
|
|
informative[f"%-{pair}close-bb_lower-period_{t}"] = (
|
|
informative["close"] / informative[f"{pair}bb_lowerband-period_{t}"]
|
|
)
|
|
|
|
informative[f"%-{pair}roc-period_{t}"] = ta.ROC(informative, timeperiod=t)
|
|
|
|
informative[f"%-{pair}relative_volume-period_{t}"] = (
|
|
informative["volume"] / informative["volume"].rolling(t).mean()
|
|
) # (1)
|
|
|
|
informative[f"%-{pair}pct-change"] = informative["close"].pct_change()
|
|
informative[f"%-{pair}raw_volume"] = informative["volume"]
|
|
informative[f"%-{pair}raw_price"] = informative["close"]
|
|
# (2)
|
|
|
|
indicators = [col for col in informative if col.startswith("%")]
|
|
# This loop duplicates and shifts all indicators to add a sense of recency to data
|
|
for n in range(self.freqai_info["feature_parameters"]["include_shifted_candles"] + 1):
|
|
if n == 0:
|
|
continue
|
|
informative_shift = informative[indicators].shift(n)
|
|
informative_shift = informative_shift.add_suffix("_shift-" + str(n))
|
|
informative = pd.concat((informative, informative_shift), axis=1)
|
|
|
|
df = merge_informative_pair(df, informative, self.config["timeframe"], tf, ffill=True)
|
|
skip_columns = [
|
|
(s + "_" + tf) for s in ["date", "open", "high", "low", "close", "volume"]
|
|
]
|
|
df = df.drop(columns=skip_columns)
|
|
|
|
# Add generalized indicators here (because in live, it will call this
|
|
# function to populate indicators during training). Notice how we ensure not to
|
|
# add them multiple times
|
|
if set_generalized_indicators:
|
|
df["%-day_of_week"] = (df["date"].dt.dayofweek + 1) / 7
|
|
df["%-hour_of_day"] = (df["date"].dt.hour + 1) / 25
|
|
# (3)
|
|
|
|
# user adds targets here by prepending them with &- (see convention below)
|
|
df["&-s_close"] = (
|
|
df["close"]
|
|
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.mean()
|
|
/ df["close"]
|
|
- 1
|
|
) # (4)
|
|
|
|
return df
|
|
```
|
|
|
|
1. Features - Move to `feature_engineering_expand_all`
|
|
2. Basic features, not expanded across `indicator_periods_candles` - move to`feature_engineering_expand_basic()`.
|
|
3. Standard features which should not be expanded - move to `feature_engineering_standard()`.
|
|
4. Targets - Move this part to `set_freqai_targets()`.
|
|
|
|
### freqai - feature engineering expand all
|
|
|
|
Features will now expand automatically. As such, the expansion loops, as well as the `{pair}` / `{timeframe}` parts will need to be removed.
|
|
|
|
``` python linenums="1"
|
|
def feature_engineering_expand_all(self, dataframe, period, **kwargs) -> DataFrame::
|
|
"""
|
|
*Only functional with FreqAI enabled strategies*
|
|
This function will automatically expand the defined features on the config defined
|
|
`indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and
|
|
`include_corr_pairs`. In other words, a single feature defined in this function
|
|
will automatically expand to a total of
|
|
`indicator_periods_candles` * `include_timeframes` * `include_shifted_candles` *
|
|
`include_corr_pairs` numbers of features added to the model.
|
|
|
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
|
|
|
More details on how these config defined parameters accelerate feature engineering
|
|
in the documentation at:
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
|
|
|
:param df: strategy dataframe which will receive the features
|
|
:param period: period of the indicator - usage example:
|
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
|
"""
|
|
|
|
dataframe["%-rsi-period"] = ta.RSI(dataframe, timeperiod=period)
|
|
dataframe["%-mfi-period"] = ta.MFI(dataframe, timeperiod=period)
|
|
dataframe["%-adx-period"] = ta.ADX(dataframe, timeperiod=period)
|
|
dataframe["%-sma-period"] = ta.SMA(dataframe, timeperiod=period)
|
|
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
|
|
|
|
bollinger = qtpylib.bollinger_bands(
|
|
qtpylib.typical_price(dataframe), window=period, stds=2.2
|
|
)
|
|
dataframe["bb_lowerband-period"] = bollinger["lower"]
|
|
dataframe["bb_middleband-period"] = bollinger["mid"]
|
|
dataframe["bb_upperband-period"] = bollinger["upper"]
|
|
|
|
dataframe["%-bb_width-period"] = (
|
|
dataframe["bb_upperband-period"]
|
|
- dataframe["bb_lowerband-period"]
|
|
) / dataframe["bb_middleband-period"]
|
|
dataframe["%-close-bb_lower-period"] = (
|
|
dataframe["close"] / dataframe["bb_lowerband-period"]
|
|
)
|
|
|
|
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
|
|
|
|
dataframe["%-relative_volume-period"] = (
|
|
dataframe["volume"] / dataframe["volume"].rolling(period).mean()
|
|
)
|
|
|
|
return dataframe
|
|
|
|
```
|
|
|
|
### Freqai - feature engineering basic
|
|
|
|
Basic features. Make sure to remove the `{pair}` part from your features.
|
|
|
|
``` python linenums="1"
|
|
def feature_engineering_expand_basic(self, dataframe: DataFrame, **kwargs) -> DataFrame::
|
|
"""
|
|
*Only functional with FreqAI enabled strategies*
|
|
This function will automatically expand the defined features on the config defined
|
|
`include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
|
|
In other words, a single feature defined in this function
|
|
will automatically expand to a total of
|
|
`include_timeframes` * `include_shifted_candles` * `include_corr_pairs`
|
|
numbers of features added to the model.
|
|
|
|
Features defined here will *not* be automatically duplicated on user defined
|
|
`indicator_periods_candles`
|
|
|
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
|
|
|
More details on how these config defined parameters accelerate feature engineering
|
|
in the documentation at:
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-parameter-table/#feature-parameters
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
|
|
|
|
:param df: strategy dataframe which will receive the features
|
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
|
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
|
|
"""
|
|
dataframe["%-pct-change"] = dataframe["close"].pct_change()
|
|
dataframe["%-raw_volume"] = dataframe["volume"]
|
|
dataframe["%-raw_price"] = dataframe["close"]
|
|
return dataframe
|
|
```
|
|
|
|
### FreqAI - feature engineering standard
|
|
|
|
``` python linenums="1"
|
|
def feature_engineering_standard(self, dataframe: DataFrame, **kwargs) -> DataFrame:
|
|
"""
|
|
*Only functional with FreqAI enabled strategies*
|
|
This optional function will be called once with the dataframe of the base timeframe.
|
|
This is the final function to be called, which means that the dataframe entering this
|
|
function will contain all the features and columns created by all other
|
|
freqai_feature_engineering_* functions.
|
|
|
|
This function is a good place to do custom exotic feature extractions (e.g. tsfresh).
|
|
This function is a good place for any feature that should not be auto-expanded upon
|
|
(e.g. day of the week).
|
|
|
|
All features must be prepended with `%` to be recognized by FreqAI internals.
|
|
|
|
More details about feature engineering available:
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
|
|
|
:param df: strategy dataframe which will receive the features
|
|
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
|
|
"""
|
|
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
|
|
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
|
|
return dataframe
|
|
```
|
|
|
|
### FreqAI - set Targets
|
|
|
|
Targets now get their own, dedicated method.
|
|
|
|
``` python linenums="1"
|
|
def set_freqai_targets(self, dataframe: DataFrame, **kwargs) -> DataFrame:
|
|
"""
|
|
*Only functional with FreqAI enabled strategies*
|
|
Required function to set the targets for the model.
|
|
All targets must be prepended with `&` to be recognized by the FreqAI internals.
|
|
|
|
More details about feature engineering available:
|
|
|
|
https://www.freqtrade.io/en/latest/freqai-feature-engineering
|
|
|
|
:param df: strategy dataframe which will receive the targets
|
|
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
|
|
"""
|
|
dataframe["&-s_close"] = (
|
|
dataframe["close"]
|
|
.shift(-self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.rolling(self.freqai_info["feature_parameters"]["label_period_candles"])
|
|
.mean()
|
|
/ dataframe["close"]
|
|
- 1
|
|
)
|
|
|
|
return dataframe
|
|
```
|
|
|
|
|
|
### FreqAI - New data Pipeline
|
|
|
|
If you have created your own custom `IFreqaiModel` with a custom `train()`/`predict()` function, *and* you still rely on `data_cleaning_train/predict()`, then you will need to migrate to the new pipeline. If your model does *not* rely on `data_cleaning_train/predict()`, then you do not need to worry about this migration. That means that this migration guide is relevant for a very small percentage of power-users. If you stumbled upon this guide by mistake, feel free to inquire in depth about your problem in the Freqtrade discord server.
|
|
|
|
The conversion involves first removing `data_cleaning_train/predict()` and replacing them with a `define_data_pipeline()` and `define_label_pipeline()` function to your `IFreqaiModel` class:
|
|
|
|
```python linenums="1" hl_lines="11-14 47-49 55-57"
|
|
class MyCoolFreqaiModel(BaseRegressionModel):
|
|
"""
|
|
Some cool custom IFreqaiModel you made before Freqtrade version 2023.6
|
|
"""
|
|
def train(
|
|
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
|
) -> Any:
|
|
|
|
# ... your custom stuff
|
|
|
|
# Remove these lines
|
|
# data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
|
# self.data_cleaning_train(dk)
|
|
# data_dictionary = dk.normalize_data(data_dictionary)
|
|
# (1)
|
|
|
|
# Add these lines. Now we control the pipeline fit/transform ourselves
|
|
dd = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
|
dk.feature_pipeline = self.define_data_pipeline(threads=dk.thread_count)
|
|
dk.label_pipeline = self.define_label_pipeline(threads=dk.thread_count)
|
|
|
|
(dd["train_features"],
|
|
dd["train_labels"],
|
|
dd["train_weights"]) = dk.feature_pipeline.fit_transform(dd["train_features"],
|
|
dd["train_labels"],
|
|
dd["train_weights"])
|
|
|
|
(dd["test_features"],
|
|
dd["test_labels"],
|
|
dd["test_weights"]) = dk.feature_pipeline.transform(dd["test_features"],
|
|
dd["test_labels"],
|
|
dd["test_weights"])
|
|
|
|
dd["train_labels"], _, _ = dk.label_pipeline.fit_transform(dd["train_labels"])
|
|
dd["test_labels"], _, _ = dk.label_pipeline.transform(dd["test_labels"])
|
|
|
|
# ... your custom code
|
|
|
|
return model
|
|
|
|
def predict(
|
|
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
|
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
|
|
|
# ... your custom stuff
|
|
|
|
# Remove these lines:
|
|
# self.data_cleaning_predict(dk)
|
|
# (2)
|
|
|
|
# Add these lines:
|
|
dk.data_dictionary["prediction_features"], outliers, _ = dk.feature_pipeline.transform(
|
|
dk.data_dictionary["prediction_features"], outlier_check=True)
|
|
|
|
# Remove this line
|
|
# pred_df = dk.denormalize_labels_from_metadata(pred_df)
|
|
# (3)
|
|
|
|
# Replace with these lines
|
|
pred_df, _, _ = dk.label_pipeline.inverse_transform(pred_df)
|
|
if self.freqai_info.get("DI_threshold", 0) > 0:
|
|
dk.DI_values = dk.feature_pipeline["di"].di_values
|
|
else:
|
|
dk.DI_values = np.zeros(outliers.shape[0])
|
|
dk.do_predict = outliers
|
|
|
|
# ... your custom code
|
|
return (pred_df, dk.do_predict)
|
|
```
|
|
|
|
|
|
1. Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new `define_data_pipeline()` and `define_label_pipeline()` functions. The `data_cleaning_train()` and `data_cleaning_predict()` functions are no longer used. You can override `define_data_pipeline()` to create your own custom pipeline if you wish.
|
|
2. Data normalization and cleaning is now homogenized with the new pipeline definition. This is created in the new `define_data_pipeline()` and `define_label_pipeline()` functions. The `data_cleaning_train()` and `data_cleaning_predict()` functions are no longer used. You can override `define_data_pipeline()` to create your own custom pipeline if you wish.
|
|
3. Data denormalization is done with the new pipeline. Replace this with the lines below.
|