freqtrade_origin/docs/advanced-orderflow.md
2024-02-13 10:54:59 +01:00

63 lines
1.5 KiB
Markdown

# Advanced Orderflow
This page explains some advanced tasks and configuration options that can be performed to use orderflow data by downloading public trade data.
## Quickstart
enable using public trades in `config.json`
```
"exchange": {
...
"use_public_trades": true,
}
```
set orderflow processing configuration in `config.json`:
```
"orderflow": {
"scale": 0.5,
"stacked_imbalance_range": 3, # needs at least this amount of imblance next to each other
"imbalance_volume": 1, # filters out below
"imbalance_ratio": 300 # filters out ratio lower than
},
```
## Downloading data for backtesting
- use `--dl-trades` to fetch trades for timerange
For example
``` bash
freqtrade download-data -p BTC/USDT:USDT --timerange 20230101- --trading-mode futures --timeframes 5m --dl-trades
```
## Accessing orderflow data
Several new columns are available when activated.
``` python
dataframe['trades']
dataframe['orderflow']
dataframe['bid']
dataframe['ask']
dataframe['delta']
dataframe['min_delta']
dataframe['max_delta']
dataframe['total_trades']
dataframe['stacked_imbalances_bid']
dataframe['stacked_imbalances_ask']
```
These can be accessed like this:
``` python
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# calculating cumulative delta
dataframe['cum_delta'] = cumulative_delta(dataframe['delta'])
def cumulative_delta(delta: Series):
cumdelta = delta.cumsum()
return cumdelta
```